Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 62(5): 2404-2418, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30776229

ABSTRACT

Hybrid molecules are composed of two pharmacophores with different biological activities. Here, we conjugated phthalazine moieties (antiangiogenetic pharmacophore) and bis(hydroxymethyl)pyrrole moieties (DNA cross-linking agent) to form a series of bis(hydroxymethyl)pyrrolo[2,1- a]phthalazine hybrids. These conjugates were cytotoxic to a variety of cancer cell lines by inducing DNA damage, arresting cell cycle progression at the G2/M phase, triggering apoptosis, and inhibiting vascular endothelial growth factor receptor 2 (VEGFR-2) in endothelial cells. Among them, compound 29d encapsulated in a liposomal formulation (e.g., 29dL) significantly suppressed the growth of small-cell lung cancer cell (H526) xenografts in mice. Based on immunohistochemical staining, the tumor xenografts in mice treated with 29dL showed time-dependent decreases in the intensity of CD31, a marker of blood vessels, whereas the intensity of γ-H2AX, a marker of DNA damage, increased. The present data revealed that the conjugation of antiangiogenic and DNA-damaging agents can generate potential hybrid agents for cancer treatment.


Subject(s)
Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , DNA Damage/drug effects , Phthalazines/chemistry , Phthalazines/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Animals , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Humans , Mice , Neovascularization, Pathologic/prevention & control , Phosphorylation , Phthalazines/chemical synthesis , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
2.
Oncogene ; 38(17): 3232-3247, 2019 04.
Article in English | MEDLINE | ID: mdl-30626937

ABSTRACT

IFIT1 and IFIT3 are abundant products of interferon-stimulating genes. While the importance of IFIT1 and IFIT3 in the prognosis of cancer has been reported, the molecular basis of IFIT1 and IFIT3 in cancer progression remains unexplored. In the present study, we investigated the modes of action and the clinical significance of IFIT1 and IFIT3 in oral squamous cell carcinoma (OSCC). Ectopic expression of IFIT1 or IFIT3 induced OSCC cell invasion by promoting the epithelial-mesenchymal transition, whereas IFIT1 or IFIT3 knockdown exhibited opposite effects. Overexpression of IFIT1 or IFIT3 promoted tumor growth, regional and distant metastasis in xenograft and orthotopic nude mice models. Most importantly, IFIT1 or IFIT3 overexpression increased the levels of p-EGFRY1068 and p-AKTS473 in OSCC cells and also enhanced tumor inhibitory effect of gefitinib. By immunoprecipitation and LC-MS/MS analysis, we found that IFIT1 and IFIT3 interacted with ANXA2 that enhanced p-EGFRY1068 endosomal recycling. Depletion of ANXA2 using siRNA therefore abolished p-EGFRY1068 and p-AKTS473 expression in IFIT1- or IFIT3-overexpressed cells. Furthermore, a significant positive association of increased IFIT1 and IFIT3 expression with advanced T-stage, lymph node metastasis, perineural invasion, lymphovascular invasion, extranodal extension, and poor overall survival rate was confirmed in OSCC patients. We also found a statistically positive correlation of p-EGFRY1068 expression with IFIT1 and IFIT3 in OSCC tumors and poor clinical outcome in patients. Collectively, we demonstrated a novel role of IFIT1 and IFIT3 in driving OSCC progression and metastasis by interacting with ANXA2 and hence enhancing p-EGFR recycling and its downstream signaling.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/metabolism , Carrier Proteins/metabolism , Gefitinib/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Mouth Neoplasms/metabolism , Adaptor Proteins, Signal Transducing , Animals , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , ErbB Receptors/metabolism , Heterografts/drug effects , Heterografts/metabolism , Heterografts/pathology , Humans , Lymphatic Metastasis/pathology , Mice, Nude , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Neoplasm Staging/methods , Prognosis , RNA-Binding Proteins , Signal Transduction/drug effects , Survival Rate
3.
Front Mol Biosci ; 6: 148, 2019.
Article in English | MEDLINE | ID: mdl-31921891

ABSTRACT

Interferon-induced protein with tetratricopeptide repeats (IFIT) genes are prominent interferon-stimulated genes (ISGs). The human IFIT gene family consists of four genes named IFIT1, IFIT2, IFIT3, and IFIT5. The expression of IFIT genes is very low in most cell types, whereas their expression is greatly enhanced by interferon treatment, viral infection, and pathogen-associated molecular patterns (PAMPs). The proteins encoded by IFIT genes have multiple tetratricopeptide repeat (TPR) motifs. IFIT proteins do not have any known enzymatic roles. However, they execute a variety of cellular functions by mediating protein-protein interactions and forming multiprotein complexes with cellular and viral proteins through their multiple TPR motifs. The versatile tertiary structure of TPR motifs in IFIT proteins enables them to be involved in distinct biological functions, including host innate immunity, antiviral immune response, virus-induced translation initiation, replication, double-stranded RNA signaling, and PAMP recognition. The current understanding of the IFIT proteins and their role in cellular signaling mechanisms is limited to the antiviral immune response and innate immunity. However, recent studies on IFIT protein functions and their involvement in various molecular signaling mechanisms have implicated them in cancer progression and metastasis. In this article, we focused on critical molecular, biological and oncogenic functions of human IFIT proteins by reviewing their prognostic significance in health and cancer. Research suggests that IFIT proteins could be novel therapeutic targets for cancer therapy.

4.
Eur J Med Chem ; 127: 235-249, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28064078

ABSTRACT

A novel series of bis(hydroxymethyl)indolizino[8,7-b]indole hybrids composed of ß-carboline (topoisomerase I/II inhibition) and bis(hydroxymethyl)pyrrole (DNA cross-linking) are synthesized for antitumor evaluation. Of tumor cell lines tested, small cell lung cancer (SCLC) cell lines are the most sensitive to the newly synthesized compounds. These hybrids induce cell cycle arrest at the G2/M phase, trigger tumor cell apoptotic death, and display diverse mechanisms of action involving topoisomerase II (Topo II) inhibition and induction of DNA cross-linking. Intriguingly, the substituent at N11 (H or Me) plays a critical role in modulating Topo II inhibition and DNA cross-linking activities. N11-Me derivatives predispose to induce DNA crosslinks, whereas N11-H derivatives potently inhibit Topo II. Computational analysis implicates that N11-Me restrict the torsion angles of the two adjacent OH on pyrrole resulting in a favorable of DNA cross-linking. Among these hybrids, compound 17a with N11-H is more effective than cisplatin and etoposide, but as potent as irinotecan, against the growth of SCLC H526 cells in xenograft model.


Subject(s)
DNA Topoisomerases, Type II/metabolism , DNA/metabolism , Drug Design , Indoles/chemical synthesis , Indoles/pharmacology , Lung Neoplasms/pathology , Small Cell Lung Carcinoma/pathology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Humans , Indoles/chemistry , Indoles/metabolism , Mice , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/metabolism , Topoisomerase I Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/metabolism , Topoisomerase II Inhibitors/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...