Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(19): 4524-4531, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37159252

ABSTRACT

Halobismuthates(III) and haloantimonates(III) with the R3MX6 chemical composition create a new and broadly unexplored class of ferroelectric compounds. In this paper, we report the haloantimonate(III) ferroelectric comprising an aromatic (1,2,4-triazolium) cation, i.e., (C2N3H4)3[SbBr6] (TBA). Temperature-resolved structural and spectroscopic studies indicate that TBA undergoes two solid-solid phase transitions between tetragonal [P42/m (I)] and monoclinic [P21/n (II) and P21 (III)] phases. TBA experiences a paraelectric-ferroelectric phase transition at 271/268 K (II-III) driven by "order-disorder" and "displacive" molecular mechanisms. The ferroelectric properties of phase III have been confirmed by hysteresis loop measurement, and additionally, the acentric order has been further supported by second-harmonic generation measurements. Insight into the molecular origins of the ferroelectric polarization was provided by periodic ab initio calculations using the Berry phase approach at the density functional theory (DFT-D3) method level employed for calculations of spontaneous polarization.

2.
Dalton Trans ; 48(39): 14829-14838, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31552956

ABSTRACT

Two organic-inorganic hybrid halobismuthates(iii), (NH2CHNH2)3[Bi2Cl9] (FBC) and (NH2CHNH2)3[Bi2Br9] (FBB), have been prepared with their structures revealed by single-crystal X-ray diffraction at various temperatures. FBC is characterized by one-dimensional (1D) [Bi2Cl9]3-∞ anionic chains built by edge-sharing BiCl6 octahedra, whereas FBB adopts a layer structure (2D) [Bi2Br9]3-∞. Both materials were found to exhibit a rich polymorphism in the solid state. FBC undergoes two reversible phase transitions (PTs) at 218/220 K and at 123/126 K (cooling/heating), respectively, whereas for FBB also two PTs occur close together at 196/199 K and at 190/188 K. Dielectric response around the PT temperatures of FBC and FBB reflects high disorder of dipolar groups over the high temperature phases. The 'order-disorder' mechanism of these PTs is assigned to the dynamics of formamidinium cations. FBB is considered as a ferroic material exhibiting ferroelastic domains below 196 K. The molecular motions of organic cations in a wide temperature range were studied by means of 1H NMR (spin-lattice relaxation time). Presented findings will provide a new method to explore organic-inorganic multifunctional PT materials.

3.
Dalton Trans ; 47(33): 11308-11312, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30058651

ABSTRACT

Water-presence dependent switchable ferroelectricity was discovered in the hybrid organic-inorganic zinc oxalate 1D coordination polymer (DABCOH2)[Zn(C2O4)2]·3H2O (DZnOH, where DABCOH2: diprotonated 1.4-diazoniabicyclo[2.2.2]octane). The compound undergoes a reversible para-ferroelectric phase transition at 207 K from room temperature centrosymmetric phase I (space group P21/n) to low-temperature non-centrosymmetric phase II (space group P21). The microscopic mechanism of the phase transition is directly associated with the reconstruction of the hydrogen-bond network. On heating, the crystals exhibit a reversible single-crystal to single-crystal transformation concerned with the removal of all water molecules giving anhydrous DABCO zinc oxalate (DABCOH2)[Zn(C2O4)2] (DZnO). The dehydrated compound does not show ferroelectric properties.

4.
RSC Adv ; 8(47): 26506-26516, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-35541085

ABSTRACT

The simple organic crystal formamidinium iodide (FAI) appeared to be a novel semiconducting material in a wide temperature range. The electric properties of FAI and the role of formamidinium cation (FA+) in the molecular mechanism of the solid-to-solid phase transitions (at 345 K (III → II) and 388 K (II → I)) were analysed. The creation of the ferroelastic domain structure in phases III and II was proved on the basis of observation under a polarizing microscope. Moreover, the molecular arrangement of dipolar organic FA+ was studied by 1H NMR (spin-lattice relaxation time) and vibrational spectroscopy supported by density functional theory. The theoretical results show a good agreement with the experimental data. The infrared spectrum in a harmonic approximation was calculated and a comparative vibrational analysis was performed. All used techniques showed that the prototypic phase I exhibits the feature of plastic phase.

5.
Dalton Trans ; 46(47): 16605-16614, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29165466

ABSTRACT

The easy to prepare and stable in air (2-methylimidazolium) tetraiodoantimoniate(iii) single-crystals with optical band gap of 2.17(1) eV at room temperature have been synthesized. The crystal structure features one-dimensional [SbI4]-n anionic chains, which are intercepted with stacks of 2MIm+ ions. At 294/295 K, it undergoes a structural phase transition to an incommensurately modulated phase as a result of subtle, lone-pair-electron-driven distortions of the anions. Separately from the anion displacements, the ordering of 2MIm+ countercations takes place over a wide temperature range of the modulated phase. The disorder changes from dynamic to static around 200 K, which affects the crystal structure leading to discontinuities and step-like contraction of the lattice parameters. The material is thermochromic with prominent color changes, from raspberry to yellow at low temperatures. The calculated electronic structures and observed optical properties signify its semiconducting character.

6.
Article in English | MEDLINE | ID: mdl-28231482

ABSTRACT

The paper presents the Infrared and Raman spectra of the powdered [C3N2H5+]2[I-∙I3-] crystal at the temperature intervals of 11-270K, covering two low-temperature phase transitions: discontinuous at 182/188K (cooling/heating) and continuous at 254K. The research shows that the vibrational states of the pyrazolium cations change significantly during discontinuous phase transition (III→II), while the continuous nature of successive structural transformation is more subtle and displays an insignificant change in the temperature coefficient of numerous vibrations during the II→I PT at 254K. The spectacular changes at Raman spectra above 188K confirm a huge rebuilding of inorganic network from [I-∙I3-] to [I42-]. Additionally, a complete geometry optimization was carried out in the solid state in order to obtain minimum structures and bonding properties. The theoretical results correspond well with the experimental data. Moreover, the infrared spectrum in harmonic approximation was calculated, and a comparative vibrational analysis was performed. CRYSTAL09 vibrational results appear to be in a good agreement with the experimental ones.

7.
Dalton Trans ; 44(42): 18447-58, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26441208

ABSTRACT

Dipyrazolium iodide triiodide, [C3N2H5(+)]2[I(-)·I3(-)], has been synthesized and studied by means of X-ray diffraction, differential scanning calorimetry, dielectric measurements, and UV-Vis spectroscopy. Two reversible, solid-solid phase transitions (Imma (I) ↔ (II) ↔Pbam (III)) at 254 K and 182/188 K respectively have been revealed. The anionic network experiences spectacular changes associated with a huge rebuilding of the inorganic network from [I(-)·I3(-)] to [I4(2-)]. The low frequency dielectric relaxation process occurs in phase II with the activation energy of ca. 34 kJ mol(-1). The molecular motion of the pyrazolium cations in [C3N2H5(+)]2[I(-)·I3(-)] has been studied by means of proton magnetic resonance studies ((1)H NMR). The ferroelastic properties of all phases have been confirmed by polarizing microscopy observations. The molecular mechanism of the phase transitions in the compound is proposed.

8.
J Phys Chem A ; 118(34): 7159-66, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25099129

ABSTRACT

The crystal and molecular structure of the 2,3,5,6-tetramethylpyrazine (TMP) complex with 2,5-dibromo-3,6-dihydroxy-p-quinone (bromanilic acid, BRA) has been studied and the results are compared with TMP CLA (2,5-dichloro-3,6-dihydroxy-p-quinone (chloranilic acid, CLA) complex. The X-ray structure of TMP BRA complex indicates the formation of dimeric units, in which two BRA(-) anions are connected by two O-H···O (2.646(2) Å) hydrogen bonds, whereas the cations and anions are joined together by strong N(+)-H···O(-) (2.657(2) Å) hydrogen bonds. The results are analyzed in terms of both the methyl group surroundings and the C-H···O and N(+)-H···O(-) (or N···H-O) bridge formations. Both effects, the strength of the N(+)-H···O(-) hydrogen bonds and steric hindrance for the rotations, are responsible for the CH3 group dynamics. For the TMP CLA and TMP BRA complexes, the inelastic neutron backscattering spectra were also investigated. In the case of TMP CLA, four tunneling signals have been observed in the energy range ±30 µeV, which indicates four inequivalent methyl groups in the crystal structure at the lowest temperature. No tunneling splitting is observed in the case of the TMP BRA complex, most probably due to the overlapping with the elastic peak. The tunneling results are consistent with the (1)H NMR spin-lattice relaxation time investigations in a wide temperature range, which also point to the CH3 group tunneling effect in the case of TMP CLA.

9.
J Phys Chem A ; 118(20): 3564-71, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24804840

ABSTRACT

Some of haloantimonates(III) and halobismuthates(III) are ferroelectric. Bis(imidazolium) pentachloroantimonate(III), (C3N2H5)2SbCl5 (abbreviation: ICA) is the first example of such compounds with a one-dimensional anionic chain which exhibits ferroelectric properties. The relation between the ionic dynamics and network structure and the ferroelectric features is not clear. Here Nuclear Magnetic Resonance (NMR) (1)H spin-lattice relaxation experiments at 25 MHz are reported for ICA in the temperature range of 80 K-360 K, covering ferroelectric-paraelectric and structural phase transitions of the compound occurring at 180 and 342 K, respectively. The relaxation process is biexponential in the whole temperature range indicating two dynamically nonequivalent types of imidazolium cations. Temperature dependences of both relaxation contributions allow for identifying three motional processes. Two of them are cation-specific - i.e. they are attributed to the two types of imidazolium cations, respectively. The third process involves both types of cations, and it is characterized by much lower activation energy. Moreover, the relaxation data (combined with (1)H second moment measurements) show that the ferroelectric-paraelectric phase transition mechanism is governed, to a large extent, by the anionic network arrangement. The NMR studies are complemented by dielectric spectroscopy experiments performed in the vicinity of the Curie temperature, TC = 180 K, to get insight into the mechanism of the ferroelectric-paraelectric phase transition. The dielectric dispersion data show critical slowing down of the macroscopic relaxation time, τ, in ICA when approaching TC from the paraelectric side, indicating an order-disorder type of ferroelectrics.

SELECTION OF CITATIONS
SEARCH DETAIL
...