Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(45): eabj8905, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34731010

ABSTRACT

Topology is central to understanding and engineering materials that display robust physical phenomena immune to imperfections. Different topological phases of matter are characterized by topological invariants. In energy-conserving (Hermitian) systems, these invariants are determined by the winding of eigenstates in momentum space. In non-Hermitian systems, a topological invariant is predicted to emerge from the winding of the complex eigenenergies. Here, we directly measure the non-Hermitian topological invariant arising from exceptional points in the momentum-resolved spectrum of exciton polaritons. These are hybrid light-matter quasiparticles formed by photons strongly coupled to electron-hole pairs (excitons) in a halide perovskite semiconductor at room temperature. We experimentally map out both the real (energy) and imaginary (linewidth) parts of the spectrum near the exceptional points and extract the novel topological invariant­fractional spectral winding. Our work represents an essential step toward realization of non-Hermitian topological phases in a condensed matter system.

2.
Adv Mater ; 33(3): e2005732, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33275309

ABSTRACT

Atomically thin transition metal dichalcogenide crystals (TMDCs) have extraordinary optical properties that make them attractive for future optoelectronic applications. Integration of TMDCs into practical all-dielectric heterostructures hinges on the ability to passivate and protect them against necessary fabrication steps on large scales. Despite its limited scalability, encapsulation of TMDCs in hexagonal boron nitride (hBN) currently has no viable alternative for achieving high performance of the final device. Here, it is shown that the novel, ultrathin Ga2 O3 glass is an ideal centimeter-scale coating material that enhances optical performance of the monolayers and protects them against further material deposition. In particular, Ga2 O3 capping of monolayer WS2 outperforms commercial-grade hBN in both scalability and optical performance at room temperature. These properties make Ga2 O3 highly suitable for large-scale passivation and protection of monolayer TMDCs in functional heterostructures.

3.
Nat Commun ; 11(1): 429, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31969565

ABSTRACT

Superfluidity, first discovered in liquid 4He, is closely related to Bose-Einstein condensation (BEC) phenomenon. However, even at zero temperature, a fraction of the quantum liquid is excited out of the condensate into higher momentum states via interaction-induced fluctuations-the phenomenon of quantum depletion. Quantum depletion of atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This measurement is even more challenging in driven-dissipative exciton-polariton condensates, since their non-equilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of a high-density exciton-polariton condensate by detecting the spectral branch of elementary excitations populated by this process. Analysis of this excitation branch shows that quantum depletion of exciton-polariton condensates can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the exciton fraction in an exciton polariton. Our results reveal beyond mean-field effects of exciton-polariton interactions and call for a deeper understanding of the relationship between equilibrium and non-equilibrium BECs.

4.
Sci Rep ; 7(1): 7094, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28769102

ABSTRACT

Semiconductor microcavities are often influenced by structural imperfections, which can disturb the flow and dynamics of exciton-polariton condensates. Additionally, in exciton-polariton condensates there is a variety of dynamical scenarios and instabilities, owing to the properties of the incoherent excitonic reservoir. We investigate the dynamics of an exciton-polariton condensate which emerges in semiconductor microcavity subject to disorder, which determines its spatial and temporal behaviour. Our experimental data revealed complex burst-like time evolution under non-resonant optical pulsed excitation. The temporal patterns of the condensate emission result from the intrinsic disorder and are driven by properties of the excitonic reservoir, which decay in time much slower with respect to the polariton condensate lifetime. This feature entails a relaxation oscillation in polariton condensate formation, resulting in ultrafast emission pulses of coherent polariton field. The experimental data can be well reproduced by numerical simulations, where the condensate is coupled to the excitonic reservoir described by a set of rate equations. Theory suggests the existence of slow reservoir temporarily emptied by stimulated scattering to the condensate, generating ultrashort pulses of the condensate emission.

5.
Phys Rev Lett ; 115(18): 186401, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26565478

ABSTRACT

An expanding polariton condensate is investigated under pulsed nonresonant excitation with a small laser pump spot. Far above the condensation threshold we observe a pronounced increase in the dispersion curvature, with a subsequent linearization of the spectrum and strong luminescence from a ghost branch orthogonally polarized with respect to the linearly polarized condensate emission. Polarization of both branches is understood in terms of spin-dependent polariton-polariton scattering. The presence of the ghost branch has been confirmed in time-resolved measurements. The effects of disorder and dissipation in the photoluminescence of polariton condensates and their excitations are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...