Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Entomol ; 59(6): 2176-2181, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36166571

ABSTRACT

The Asian longhorned tick (Haemaphysalis longicornis Neumann), native to East Asia, was first reported in the United States in 2017 and is now established in at least 17 states. Haemaphysalis longicornis feeds on birds in its range outside of the United States, and migratory birds disperse this tick and tick-borne pathogens. However, early studies in the United States did not find H. longicornis on migrating passerine birds. The transport of the parthenogenetic H. longicornis on birds has the potential to greatly expand its range. We report the first discovery of H. longicornis on migratory passerine birds in the Americas.


Subject(s)
Ixodidae , Passeriformes , Ticks , United States , Animals
2.
J Med Entomol ; 58(6): 2255-2263, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34080012

ABSTRACT

The Asian longhorned tick, Haemaphysalis longicornis Neumann, is an invasive species in the United States. Since its earliest recorded presence in West Virginia in 2010, H. longicornis has been reported from 15 states. While its public health significance in the United States is unclear, globally it transmits pathogens that infect livestock and humans, causing economic losses and substantial morbidity. Management and control of H. longicornis requires knowledge of its biology, ecology, and distribution. Here, we address the need for effective collection methods for host-seeking H. longicornis as an important step for accurately assessing tick abundance and potential disease risk. The number of H. longicornis collected were compared across three collection methods (dragging, sweeping, CO2 traps) and three tick check distances (5 m, 10 m, and 20 m) were compared for dragging and sweeping. Field collections were conducted from June through August 2019 in Westchester County, New York, and ticks were grouped by life stage to assess collection method efficiency. Results indicated that implementing shorter (5 m) tick check distance was ideal for adult and nymphal collections. The dragging method proved better than sweeping for adult collections; however, there was no significant difference between the methods for nymphal collections, at any tick check distance evaluated. CO2 traps attracted H. longicornis, but additional research is necessary to devise an effective tick retaining method before the traps can be implemented in the field. The results are presented to inform and support H. longicornis surveillance and control programs across the nation.


Subject(s)
Introduced Species , Ixodidae , Specimen Handling/methods , Animals , Female , Ixodidae/growth & development , Larva/growth & development , Male , Nymph/growth & development , United States
3.
J Med Entomol ; 58(2): 676-681, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33051658

ABSTRACT

The Asian longhorned tick, Haemaphysalis longicornis Neumann, is a species native to eastern Asia that has recently been discovered in the United States. In its native range, H. longicornis transmits pathogens that cause disease in humans and livestock. It is currently unknown whether H. longicornis will act as a vector in the United States. Understanding its seasonal activity patterns will be important in identifying which times of the year represent greatest potential risk to humans and livestock should this species become a threat to animal or public health. A study site was established in Yonkers, NY near the residence associated with the first reported human bite from H. longicornis in the United States. Ticks were collected once each week from July 2018 to November 2019. Haemaphysalis longicornis larvae were most active from August to November, nymphs from April to July, and adult females from June to September. This pattern of activity suggests that H. longicornis is capable of completing a generation within a single year and matches the patterns observed in its other ranges in the northern hemisphere. The data presented here contribute to a growing database for H. longicornis phenology in the northeastern United States. Potential implications of the short life cycle for the tick's vectorial capacity are discussed.


Subject(s)
Ixodidae/physiology , Seasons , Animals , Female , Larva , New York , Nymph
4.
J Med Entomol ; 55(6): 1496-1508, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30020499

ABSTRACT

Blacklegged ticks (Ixodes scapularis Say, Acari: Ixodidae) are the most commonly encountered and medically relevant tick species in New York State (NY) and have exhibited recent geographic range expansion. Forests and adjacent habitat are important determinants of I. scapularis density and may influence tick-borne pathogen prevalence. We examined how percent forest cover, dominant land cover type, and habitat type influenced I. scapularis nymph and adult density, and associated tick-borne pathogen prevalence, in an inland Lyme-emergent region of NY. I. scapularis nymphs and adults were collected from edge and wooded habitats using tick drags at 16 sites in Onondaga County, NY in 2015 and 2016. A subsample of ticks from each site was tested for the presence of Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti using a novel multiplex real-time polymerase chain reaction (PCR) assay, and deer tick virus using reverse transcription-PCR. Habitat type (wooded versus edge) was an important determinant of tick density; however, percent forest cover had little effect. B. burgdorferi was the most commonly detected pathogen and was present in ticks from all sites. Ba. microti and deer tick virus were not detected. Habitat type and dominant land cover type were not significantly related to B. burgdorferi presence or prevalence; however, ticks infected with A. phagocytophilum and B. miyamotoi were collected more often in urban environments. Similarity between B. burgdorferi prevalence in Onondaga County and hyperendemic areas of southeastern NY indicates a more rapid emergence than expected in a relatively naive region. Possible mechanistic processes underlying these observations are discussed.


Subject(s)
Arachnid Vectors/microbiology , DNA, Bacterial/analysis , DNA, Protozoan/analysis , Ixodes/microbiology , Anaplasma phagocytophilum/isolation & purification , Animals , Arachnid Vectors/parasitology , Babesia microti/isolation & purification , Borrelia burgdorferi/isolation & purification , Ecosystem , Ixodes/parasitology , New York , Nymph , Parks, Recreational , Population Density , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...