Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res ; 55: 102487, 2021 08.
Article in English | MEDLINE | ID: mdl-34419748

ABSTRACT

Emery-Dreifuss muscular dystrophy type 1 (EDMD1) is a rare genetic disease caused by mutations in the EMD gene coding for a nuclear envelope protein emerin. We generated and characterized induced pluripotent stem cells (iPSCs) from two EDMD1 patients bearing a mutation c.del153C and from one healthy donor. That mutation leads to generation of premature STOP codon. Established iPSCs are very valuable tool for disease pathogenesis investigation and for the development of new therapeutic methods after differentiation to cardiac or muscle cells. Obtained iPSCs show the proper morphology, pluripotency markers expression, normal karyotype and potential to differentiate into three germ layers.


Subject(s)
Induced Pluripotent Stem Cells , Muscular Dystrophy, Emery-Dreifuss , Cell Differentiation , Cells, Cultured , Clone Cells , Humans , Muscular Dystrophy, Emery-Dreifuss/genetics , Mutation
2.
Mol Ther Methods Clin Dev ; 15: 157-169, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31660418

ABSTRACT

Gene therapy is a promising strategy to cure rare diseases. The lack of regulatory sequences ensuring specific and robust expression in skeletal and cardiac muscle is a substantial limitation of gene therapy efficiency targeting the muscle tissue. Here we describe a novel muscle hybrid (MH) promoter that is highly active in both skeletal and cardiac muscle cells. It has an easily exchangeable modular structure, including an intronic module that highly enhances the expression of the gene driven by it. In cultured myoblasts, myotubes, and cardiomyocytes, the MH promoter gives relatively stable expression as well as higher activity and protein levels than the standard CMV and desmin gene promoters or the previously developed synthetic or CKM-based promoters. Combined with AAV2/9, the MH promoter also provides a high in vivo expression level in skeletal muscle and the heart after both intramuscular and systemic delivery. It is much more efficient than the desmin-encoding gene promoter, and it maintains the same specificity. This novel promoter has potential for gene therapy in muscle cells. It can provide stable transgene expression, ensuring high levels of therapeutic protein, and limited side effects because of its specificity. This constitutes an improvement in the efficiency of genetic disease therapy.

3.
Cells ; 8(3)2019 03 13.
Article in English | MEDLINE | ID: mdl-30871242

ABSTRACT

Emerin is an essential LEM (LAP2, Emerin, MAN1) domain protein in metazoans and an integral membrane protein associated with inner and outer nuclear membranes. Mutations in the human EMD gene coding for emerin result in the rare genetic disorder: Emery⁻Dreifuss muscular dystrophy type 1 (EDMD1). This disease belongs to a broader group called laminopathies-a heterogeneous group of rare genetic disorders affecting tissues of mesodermal origin. EDMD1 phenotype is characterized by progressive muscle wasting, contractures of the elbow and Achilles tendons, and cardiac conduction defects. Emerin is involved in many cellular and intranuclear processes through interactions with several partners: lamins; barrier-to-autointegration factor (BAF), ß-catenin, actin, and tubulin. Our study demonstrates the presence of the emerin fraction which associates with mitotic spindle microtubules and centrosomes during mitosis and colocalizes during early mitosis with lamin A/C, BAF, and membranes at the mitotic spindle. Transfection studies with cells expressing EGFP-emerin protein demonstrate that the emerin fusion protein fraction also localizes to centrosomes and mitotic spindle microtubules during mitosis. Transient expression of emerin deletion mutants revealed that the resulting phenotypes vary and are mutant dependent. The most frequent phenotypes include aberrant nuclear shape, tubulin network mislocalization, aberrant mitosis, and mislocalization of centrosomes. Emerin deletion mutants demonstrated different chromatin binding capacities in an in vitro nuclear assembly assay and chromatin-binding properties correlated with the strength of phenotypic alteration in transfected cells. Aberrant tubulin staining and microtubule network phenotype appearance depended on the presence of the tubulin binding region in the expressed deletion mutants. We believe that the association with tubulin might help to "deliver" emerin and associated membranes to decondensing chromatin. Preliminary analyses of cells from Polish patients with EDMD1 revealed that for several mutations thought to be null for emerin protein, a truncated emerin protein was present. We infer that the EDMD1 phenotype may be strengthened by the toxicity of truncated emerin expressed in patients with certain nonsense mutations in EMD.


Subject(s)
Membrane Proteins/metabolism , Mitosis , Muscular Dystrophy, Emery-Dreifuss/pathology , Nuclear Lamina/pathology , Nuclear Proteins/metabolism , Antibodies/metabolism , Cell Cycle , Centrosome/metabolism , DNA-Binding Proteins/metabolism , Epitopes/metabolism , Gene Deletion , HeLa Cells , Humans , Lamin Type A/metabolism , Membrane Proteins/deficiency , Microtubules/metabolism , Nuclear Proteins/deficiency , Phenotype , Protein Binding , Spindle Apparatus/metabolism , Tubulin/metabolism
4.
Cells ; 8(2)2019 01 25.
Article in English | MEDLINE | ID: mdl-30691039

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is one of the most severe disorders among laminopathies-a heterogeneous group of genetic diseases with a molecular background based on mutations in the LMNA gene and genes coding for interacting proteins. HGPS is characterized by the presence of aging-associated symptoms, including lack of subcutaneous fat, alopecia, swollen veins, growth retardation, age spots, joint contractures, osteoporosis, cardiovascular pathology, and death due to heart attacks and strokes in childhood. LMNA codes for two major, alternatively spliced transcripts, give rise to lamin A and lamin C proteins. Mutations in the LMNA gene alone, depending on the nature and location, may result in the expression of abnormal protein or loss of protein expression and cause at least 11 disease phenotypes, differing in severity and affected tissue. LMNA gene-related HGPS is caused by a single mutation in the LMNA gene in exon 11. The mutation c.1824C > T results in activation of the cryptic donor splice site, which leads to the synthesis of progerin protein lacking 50 amino acids. The accumulation of progerin is the reason for appearance of the phenotype. In this review, we discuss current knowledge on the molecular mechanisms underlying the development of HGPS and provide a critical analysis of current research trends in this field. We also discuss the mouse models available so far, the current status of treatment of the disease, and future prospects for the development of efficient therapies, including gene therapy for HGPS.


Subject(s)
Genetic Therapy/trends , Progeria/genetics , Progeria/therapy , Animals , Disease Models, Animal , Genetic Predisposition to Disease , Humans , Phenotype
5.
Cell Mol Biol Lett ; 23: 32, 2018.
Article in English | MEDLINE | ID: mdl-30002683

ABSTRACT

Lamin proteins are type V intermediate filament proteins (IFs) located inside the cell nucleus. They are evolutionarily conserved and have similar domain organization and properties to cytoplasmic IFs. Lamins provide a skeletal network for chromatin, the nuclear envelope, nuclear pore complexes and the entire nucleus. They are also responsible for proper connections between the karyoskeleton and structural elements in the cytoplasm: actin and the microtubule and cytoplasmic IF networks. Lamins affect transcription and splicing either directly or indirectly. Translocation of active genes into the close proximity of nuclear lamina is thought to result in their transcriptional silencing. Mutations in genes coding for lamins and interacting proteins in humans result in various genetic disorders, called laminopathies. Human genes coding for A-type lamin (LMNA) are the most frequently mutated. The resulting phenotypes include muscle, cardiac, neuronal, lipodystrophic and metabolic pathologies, early aging phenotypes, and combined complex phenotypes. The Drosophila melanogaster genome codes for lamin B-type (lamin Dm), lamin A-type (lamin C), and for LEM-domain proteins, BAF, LINC-complex proteins and all typical nuclear proteins. The fruit fly system is simpler than the vertebrate one since in flies there is only single lamin B-type and single lamin A-type protein, as opposed to the complex system of B- and A-type lamins in Danio, Xenopus and Mus musculus. This offers a unique opportunity to study laminopathies. Applying genetic tools based on Gal4 and in vitro nuclear assembly system to the fruit fly model may successfully advance knowledge of laminopathies. Here, we review studies of the laminopathies in the fly model system.


Subject(s)
Drosophila/metabolism , Lamin Type A/metabolism , Lamin Type B/metabolism , Animals , Cell Nucleus/metabolism , Humans , Lamin Type A/genetics , Lamin Type B/genetics , Nuclear Envelope/metabolism , Nuclear Lamina/metabolism
6.
Chromosoma ; 126(4): 501-517, 2017 08.
Article in English | MEDLINE | ID: mdl-27534416

ABSTRACT

LMNA gene encodes for nuclear intermediate filament proteins lamin A/C. Mutations in this gene lead to a spectrum of genetic disorders, collectively referred to as laminopathies. Lamin A/C are widely expressed in most differentiated somatic cells but not in early embryos and some undifferentiated cells. To investigate the role of lamin A/C in cell phenotype maintenance and differentiation, which could be a determinant of the pathogenesis of laminopathies, we examined the role played by exogenous lamin A and its mutants in differentiated cell lines (HeLa, NHDF) and less-differentiated HEK 293 cells. We introduced exogenous wild-type and mutated (H222P, L263P, E358K D446V, and ∆50) lamin A into different cell types and analyzed proteins' impact on proliferation, protein mobility, and endogenous nuclear envelope protein distribution. The mutants give rise to a broad spectrum of nuclear phenotypes and relocate lamin C. The mutations ∆50 and D446V enhance proliferation in comparison to wild-type lamin A and control cells, but no changes in exogenous protein mobility measured by FRAP were observed. Interestingly, although transcripts for lamins A and C are at similar level in HEK 293 cells, only lamin C protein is detected in western blots. Also, exogenous lamin A and its mutants, when expressed in HEK 293 cells underwent posttranscriptional processing. Overall, our results provide new insight into the maintenance of lamin A in less-differentiated cells. Embryonic cells are very sensitive to lamin A imbalance, and its upregulation disturbs lamin C, which may influence gene expression and many regulatory pathways.


Subject(s)
Lamin Type A/genetics , Lamin Type A/physiology , Mutation , Cell Differentiation/genetics , Cell Movement/genetics , Cell Proliferation/genetics , HEK293 Cells , HeLa Cells , Humans , Lamin Type A/chemistry , Lamin Type A/metabolism , Nuclear Envelope/metabolism , Protein Stability
7.
Open Biol ; 5(11)2015 Nov.
Article in English | MEDLINE | ID: mdl-26581574

ABSTRACT

The main functions of lamins are their mechanical and structural roles as major building blocks of the karyoskeleton. They are also involved in chromatin structure regulation, gene expression, intracellular signalling pathway modulation and development. All essential lamin functions seem to depend on their capacity for assembly or disassembly after the receipt of specific signals, and after specific, selective and precisely regulated interactions through their various domains. Reversible phosphorylation of lamins is crucial for their functions, so it is important to understand how lamin polymerization and interactions are modulated, and which sequences may undergo such modifications. This review combines experimental data with results of our in silico analyses focused on lamin phosphorylation in model organisms to show the presence of evolutionarily conserved sequences and to indicate specific in vivo phosphorylations that affect particular functions.


Subject(s)
Lamins/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence , Animals , Humans , Lamins/chemistry , Lamins/genetics , Molecular Sequence Data , Phosphorylation
8.
PLoS One ; 7(2): e32649, 2012.
Article in English | MEDLINE | ID: mdl-22393432

ABSTRACT

Lamins' functions are regulated by phosphorylation at specific sites but our understanding of the role of such modifications is practically limited to the function of cdc 2 (cdk1) kinase sites in depolymerization of the nuclear lamina during mitosis. In our study we used Drosophila lamin Dm (B-type) to examine the function of particular phosphorylation sites using pseudophosphorylated mutants mimicking single phosphorylation at experimentally confirmed in vivo phosphosites (S(25)E, S(45)E, T(435)E, S(595)E). We also analyzed lamin C (A-type) and its mutant S(37)E representing the N-terminal cdc2 (mitotic) site as well as lamin Dm R(64)H mutant as a control, non-polymerizing lamin. In the polymerization assay we could observe different effects of N-terminal cdc2 site pseudophosphorylation on A- and B-type lamins: lamin Dm S(45)E mutant was insoluble, in contrast to lamin C S(37)E. Lamin Dm T(435)E (C-terminal cdc2 site) and R(64)H were soluble in vitro. We also confirmed that none of the single phosphorylation site modifications affected the chromatin binding of lamin Dm, in contrast to the lamin C N-terminal cdc2 site. In vivo, all lamin Dm mutants were incorporated efficiently into the nuclear lamina in transfected Drosophila S2 and HeLa cells, although significant amounts of S(45)E and T(435)E were also located in cytoplasm. When farnesylation incompetent mutants were expressed in HeLa cells, lamin Dm T(435)E was cytoplasmic and showed higher mobility in FRAP assay.


Subject(s)
Lamin Type A/chemistry , Lamins/chemistry , Animals , Chromatin/chemistry , Chromatin/metabolism , Circular Dichroism , Cloning, Molecular , Drosophila melanogaster , HeLa Cells , Humans , Male , Mitosis , Mutation , Nuclear Lamina/metabolism , Phosphorylation , Protein Binding , Solubility , Spermatozoa/metabolism , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...