Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 9: 541, 2018.
Article in English | MEDLINE | ID: mdl-29867578

ABSTRACT

Autophagy, a highly conserved intracellular self-digestion process, plays an integral role in maintaining cellular homeostasis. Although emerging evidence indicate that the endocrine system regulates autophagy in mammals, there is still a scarcity of information on autophagy in avian (non-mammalian) species. Here, we show that intracerebroventricular administration of leptin reduces feed intake, modulates the expression of feeding-related hypothalamic neuropeptides, activates leptin receptor and signal transducer and activator of transcription (Ob-Rb/STAT) pathway, and significantly increases the expression of autophagy-related proteins (Atg3, Atg5, Atg7, beclin1, and LC3B) in chicken hypothalamus, liver, and muscle. Similarly, leptin treatment activates Ob-Rb/STAT pathway and increased the expression of autophagy-related markers in chicken hypothalamic organotypic cultures, muscle (QM7) and hepatocyte (Sim-CEL) cell cultures as well as in Chinese Hamster Ovary (CHO-K1) cells-overexpressing chicken Ob-Rb and STAT3. To define the downstream mediator(s) of leptin's effects on autophagy, we determined the role of the master energy sensor AMP-activated protein kinase (AMPK). Leptin treatment significantly increased the phosphorylated levels of AMPKα1/2 at Thr172 site in chicken hypothalamus and liver, but not in muscle. Likewise, AMPKα1/2 was activated by leptin in chicken hypothalamic organotypic culture and Sim-CEL, but not in QM7 cells. Blocking AMPK activity by compound C reverses the autophagy-inducing effect of leptin. Together, these findings indicate that AMPK mediates the effect of leptin on chicken autophagy in a tissue-specific manner.

2.
BMC Genomics ; 18(1): 82, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28086790

ABSTRACT

BACKGROUND: Modern broiler chickens exhibit very rapid growth and high feed efficiency compared to unselected chicken breeds. The improved production efficiency in modern broiler chickens was achieved by the intensive genetic selection for meat production. This study was designed to investigate the genetic alterations accumulated in modern broiler breeder lines during selective breeding conducted over several decades. METHODS: To identify genes important in determining muscle growth and feed efficiency in broilers, RNA sequencing (RNAseq) was conducted with breast muscle in modern pedigree male (PeM) broilers (n = 6 per group), and with an unselected foundation broiler line (Barred Plymouth Rock; BPR). The RNAseq analysis was carried out using Ilumina Hiseq (2 x 100 bp paired end read) and raw reads were assembled with the galgal4 reference chicken genome. With normalized RPM values, genes showing >10 average read counts were chosen and genes showing <0.05 p-value and >1.3 fold change were considered as differentially expressed (DE) between PeM and BPR. DE genes were subjected to Ingenuity Pathway Analysis (IPA) for bioinformatic functional interpretation. RESULTS: The results indicate that 2,464 DE genes were identified in the comparison between PeM and BPR. Interestingly, the expression of genes encoding mitochondrial proteins in chicken are significantly biased towards the BPR group, suggesting a lowered mitochondrial content in PeM chicken muscles compared to BPR chicken. This result is inconsistent with more slow muscle fibers bearing a lower mitochondrial content in the PeM. The molecular, cellular and physiological functions of DE genes in the comparison between PeM and BPR include organismal injury, carbohydrate metabolism, cell growth/proliferation, and skeletal muscle system development, indicating that cellular mechanisms in modern broiler lines are tightly associated with rapid growth and differential muscle fiber contents compared to the unselected BPR line. Particularly, PDGF (platelet derived growth factor) signaling and NFE2L2 (nuclear factor, erythroid 2-like 2; also known as NRF2) mediated oxidative stress response pathways appear to be activated in modern broiler compared to the foundational BPR line. Upstream and network analyses revealed that the MSTN (myostatin) -FST (follistatin) interactions and inhibition of AR (androgen receptor) were predicted to be effective regulatory factors for DE genes in modern broiler line. PRKAG3 (protein kinase, AMP-activated, gamma 3 non-catalytic subunit) and LIPE (lipase E) are predicted as core regulatory factors for myogenic development, nutrient and lipid metabolism. CONCLUSION: The highly upregulated genes in PeM may represent phenotypes of subclinical myopathy commonly observed in the commercial broiler breast tissue, that can lead to muscle hardening, named as woody breast. By investigating global gene expression in a highly selected pedigree broiler line and a foundational breed (Barred Plymouth Rock), the results provide insight into cellular mechanisms that regulate muscle growth, fiber composition and feed efficiency.


Subject(s)
Chickens/genetics , Gene Expression Profiling , Gene Expression Regulation , Muscle, Skeletal/metabolism , Transcriptome , Animals , Cluster Analysis , Computational Biology/methods , High-Throughput Nucleotide Sequencing , Male , Metabolic Networks and Pathways , Mitochondria, Muscle/genetics , Mitochondria, Muscle/metabolism , Molecular Sequence Annotation , Muscle, Skeletal/growth & development , Proteome , Proteomics/methods , Sequence Analysis, RNA , Signal Transduction
3.
Gen Comp Endocrinol ; 229: 74-83, 2016 04 01.
Article in English | MEDLINE | ID: mdl-26965947

ABSTRACT

Bile acids have recently become an emerging research hot spot in mammals due to their roles as metabolic regulators and molecular signatures controlling whole-body metabolic homeostasis. Such effects are still unknown in avian (non-mammalian) species. We, therefore, undertook this study to determine the effect of chenodeoxycholic acid (CDCA) on growth performance and on the expression of hypothalamic neuropeptides and hepatic lipogenic genes in broiler chickens. Chickens fed with diet-containing 0.1% or 0.5% CDCA for two weeks exhibited a significant and a dose dependent reduction of feed intake and body weight compared to the control (standard diet). These changes were accompanied with a significant decrease in plasma glucose levels at d10 and d15 post-treatment. At molecular levels, CDCA treatment significantly up-regulated the expression of feeding-related hypothalamic neuropeptides (NPY, AgRP, ORX, CRH, Ghrl, and MC1R) and down-regulated the hypothalamic expression of SOCS3. CDCA treatment also decreased the mRNA levels of key hepatic lipogenic genes (FAS, ACCα, ME, ATPcl, and SCD-1) and their related transcription factors SREBP-1/2 and PPARα. In addition, CDCA reduced the hepatic expression of FXR and the adipokine, visfatin, and adiponectin genes compared to the control. Together, our data provide evidence that CDCA alters growth performances in broilers and modulates the expression of hypothalamic neuropeptides and hepatic lipogenic and adipocytokine genes.


Subject(s)
Chenodeoxycholic Acid/therapeutic use , Chickens/metabolism , Hypothalamus/metabolism , Lipogenesis/genetics , Neuropeptides/metabolism , Animals , Chenodeoxycholic Acid/administration & dosage , Male
4.
Neuropeptides ; 58: 31-40, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26707635

ABSTRACT

Livestock and poultry sectors are facing a combination of challenges, including a substantial increase in global demand for high quality animal protein, general droughts and steady rise in animal feed cost. Thus feed efficiency (FE), which defines the animal's ability to convert feed into body weight, is a vital economic and agricultural trait. Genetic selection for FE has been largely used in chickens and has been applied without knowledge of the underlying molecular mechanisms. Although it has made tremendous progress (breast yield, growth rate, egg production), there have been a number of undesirable changes such as metabolic disorders. In the present study we divergently selected male and female quail for high and low FE and we aimed to characterize the molecular basis of these differences at the central level, with the long-term goal of maximizing FE and avoiding the unfavorable consequences. The FE phenotype in first generation quails seemed to be achieved by reduced feed intake in female and increased body weight gain in males. At the molecular level, we found that the expression of feeding-related hypothalamic genes is gender- and line-dependent. Indeed, the expression of NPY, POMC, CART, CRH, melanocortin system (MC1R, MC2R, MC4R, MC5R), ORX, mTOR and ACCα was significantly decreased, however ORXR1/2, AMPKα1, S6K1 and STAT1, 5 and 6 were increased in high compared to low FE males (P<0.05). These genes did not differ between the two female lines. ADPN gene expression was higher and its receptor Adip-R1 was lower in LFE compared to HFE females (P<0.05). In male however, although there was no difference in ADPN gene expression between the genotypes, Adip-R1 and Adip-R2 mRNA abundances were higher in the LFE compared to HFE line (P<0.05). This study identified several key central feeding-related genes that are differentially expressed between low and high FE male and female quails which might explain the differences in feed intake/body weight gain observed between the two lines. Of particular interest, we provided novel insights into central AMPK-mTOR-ACC transcriptional differences between low and high FE quail which may open new research avenues on their roles in the regulation of energy balance and FE in poultry and livestock species.


Subject(s)
Animal Nutritional Physiological Phenomena , Gene Expression , Hypothalamus/metabolism , Neuropeptides/genetics , Quail/genetics , Animals , Body Weight , Feeding Behavior , Female , Male , Neuropeptides/metabolism , Quail/metabolism , Signal Transduction
5.
Am J Physiol Regul Integr Comp Physiol ; 308(3): R173-87, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25502749

ABSTRACT

Orexin A and B, orexigenic peptides produced primarily by the lateral hypothalamus that signal through two G protein-coupled receptors, orexin receptors 1/2, have been implicated in the regulation of several physiological processes in mammals. In avian (nonmammalian vertebrates) species; however, the physiological roles of orexin are not well defined. Here, we provide novel evidence that not only is orexin and its related receptors 1/2 (ORXR1/2) expressed in chicken muscle tissue and quail muscle (QM7) cell line, orexin appears to be a secretory protein in QM7 cells. In vitro administration of recombinant orexin A and B (rORX-A and B) differentially regulated prepro-orexin expression in a dose-dependent manner with up-regulation for rORX-A (P < 0.05) and downregulation for rORX-B (P < 0.05) in QM7 cells. While both peptides upregulated ORXR1 expression, only a high dose of rORX-B decreased the expression of ORXR2 (P < 0.05). The presence of orexin and its related receptors and the regulation of its own system in avian muscle cells indicate that orexin may have autocrine, paracrine, and/or endocrine roles. rORXs differentially regulated mitochondrial dynamics network. While rORX-A significantly induced the expression of mitochondrial fission-related genes (DNM1, MTFP1, MTFR1), rORX-B increased the expression of mitofusin 2, OPA1, and OMA1 genes that are involved in mitochondrial fusion. Concomitant with these changes, rORXs differentially regulated the expression of several mitochondrial metabolic genes (av-UCP, av-ANT, Ski, and NRF-1) and their related transcriptional regulators (PPARγ, PPARα, PGC-1α, PGC-1ß, and FoxO-1) without affecting ATP synthesis. Taken together, our data represent the first evidence of the presence and secretion of orexin system in the muscle of nonmammalian species and its role in mitochondrial fusion and fission, probably through mitochondrial-related genes and their related transcription factors.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Dynamics/physiology , Muscle Cells/metabolism , Muscle, Skeletal/metabolism , Neuropeptides/metabolism , Transcription Factors/metabolism , Animals , Chickens , Female , Gene Expression Regulation/physiology , Male , Mitochondria/metabolism , Orexins , Up-Regulation/physiology
6.
PLoS One ; 9(11): e112449, 2014.
Article in English | MEDLINE | ID: mdl-25386921

ABSTRACT

As a result of the genetic selection of broiler (meat-type breeders) chickens for enhanced growth rate and lower feed conversion ratio, it has become necessary to restrict feed intake. When broilers are fed ad libitum, they would become obese and suffer from several health-related problems. A vital adaptation to starvation is autophagy, a self-eating mechanism for recycling cellular constituents. The autophagy pathway has witnessed dramatic growth in the last few years and extensively studied in yeast and mammals however, there is a paucity of information in avian (non-mammalian) species. Here we characterized several genes involved in autophagosome initiation and elongation in Red Jungle fowl (Gallus gallus) and Japanese quail (coturnix coturnix Japonica). Both complexes are ubiquitously expressed in chicken and quail tissues (liver, leg and breast muscle, brain, gizzard, intestine, heart, lung, kidney, adipose tissue, ovary and testis). Alignment analysis showed high similarity (50.7 to 91.5%) between chicken autophagy-related genes and their mammalian orthologs. Phylogenetic analysis demonstrated that the evolutionary relationship between autophagy genes is consistent with the consensus view of vertebrate evolution. Interestingly, the expression of autophagy-related genes is tissue- and gender-dependent. Furthermore, using two experimental male quail lines divergently selected over 40 generations for low (resistant, R) or high (sensitive, S) stress response, we found that the expression of most studied genes are higher in R compared to S line. Together our results indicate that the autophagy pathway is a key molecular signature exhibited gender specific differences and likely plays an important role in response to stress in avian species.


Subject(s)
Autophagy/genetics , Chickens/genetics , Coturnix/genetics , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Avian Proteins/physiology , Base Sequence , Chickens/metabolism , Coturnix/metabolism , Female , Gene Expression Profiling , Genotype , Homeostasis , Male , Mammals/genetics , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sex Factors
7.
Article in English | MEDLINE | ID: mdl-24937256

ABSTRACT

A spontaneously immortalized chicken embryo fibroblast (CEF) cell line (DF-1) is known to exhibit faster growth rate and greater sensitivity to oxidative stress compared to the primary parent CEF (pCEF1°) cells. Thus, major objectives of this study were to assess cell bioenergetics in pCEF1° and DF-1 cells under control conditions and in response to 4-hydroxy 2-nonenal (4-HNE) induced oxidative challenge. Cell bioenergetics were assessed by flux analysis of oxygen consumption rate (OCR). Under control conditions, DF-1 cells had higher OCR associated with ATP synthase activity and mitochondrial oxygen reserve capacity as well as lower OCR due to proton leak and non-mitochondrial cytochrome c oxidase activity. In response to 4-HNE (0 to 30 µM), DF-1 cells were more sensitive to oxidant challenge than both young (passage 8) and senescent (passage 19) pCEF1° cells. Both passages 8 and 19 pCEF1° cells exhibited higher proton leak in response to 4-HNE, but this was not observed in DF-1 cells. Inducible proton leak occurs by 4-HNE stimulated activation of uncoupling protein (UCP) and adenine nucleotide translocase (ANT). From mRNA expression data indicated that ANT and avian UCP were down-regulated and up-regulated, respectively, in DF-1 compared to pCEF1° cells. Thus, we hypothesize that DF-1 cells are unable to increase proton leak due to lower expression of ANT, but not avian UCP, and this inability to increase proton leak contributes to greater susceptibility to oxidative stress of DF-1 cells compared to pCEF1° cells.


Subject(s)
Cellular Senescence/physiology , Energy Metabolism , Fibroblasts/metabolism , Oxygen Consumption , Animals , Cellular Senescence/genetics , Chick Embryo , Chickens , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Primary Cell Culture , Protons , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...