Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Int J Oral Sci ; 16(1): 1, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38177101

ABSTRACT

The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity (NRC) and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitrate-reducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals (P < 0.05 in all five datasets with n = 20-82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate (a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15 healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment (P < 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria (P < 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies.


Subject(s)
Dental Plaque , Microbiota , Periodontitis , Humans , Nitrates , Nitric Oxide , Nitrites , RNA, Ribosomal, 16S/genetics , Periodontitis/microbiology , Bacteria , Dental Plaque/microbiology , Saliva/microbiology , Microbiota/genetics
3.
J Periodontol ; 94(9): 1065-1077, 2023 09.
Article in English | MEDLINE | ID: mdl-36960491

ABSTRACT

BACKGROUND: Current periodontal treatment involves instrumentation using hand and/or ultrasonic instruments, which are used either alone or in combination based on patient and clinician preference, with comparable clinical outcomes. This study sought to investigate early and later changes in the subgingival biofilm following periodontal treatment, to identify whether these changes were associated with treatment outcomes, and to investigate whether the biofilm responded differently to hand compared with ultrasonic instruments. METHODS: This was a secondary-outcome analysis of a randomized-controlled trial. Thirty-eight periodontitis patients received full-mouth subgingival instrumentation using hand (n = 20) or ultrasonic instrumentation (n = 18). Subgingival plaque was sampled at baseline and 1, 7, and 90 days following treatment. Bacterial DNA was analyzed using 16S rRNA sequencing. Periodontal clinical parameters were evaluated before and after treatment. RESULTS: Biofilm composition was comparable in both (hand and ultrasonics) treatment groups at all time points (all genera and species; p[adjusted] > 0.05). Large-scale changes were observed within groups across time points. At days 1 and 7, taxonomic diversity and dysbiosis were reduced, with an increase in health-associated genera including Streptococcus and Rothia equating to 30% to 40% of the relative abundance. When reassessed at day 90 a subset of samples reformed a microbiome more comparable with baseline, which was independent of instrumentation choice and residual disease. CONCLUSIONS: Hand and ultrasonic instruments induced comparable impacts on the subgingival plaque microbiome. There were marked early changes in the subgingival biofilm composition, although there was limited evidence that community shifts associated with treatment outcomes.


Subject(s)
Dental Plaque , Microbiota , Periodontitis , Humans , RNA, Ribosomal, 16S/genetics , Periodontitis/microbiology , Dental Plaque/therapy , Dental Plaque/microbiology , Treatment Outcome
4.
BMC Oral Health ; 22(1): 388, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068515

ABSTRACT

BACKGROUND: The COVID-19 pandemic led to significant changes in the provision of dental services, aimed at reducing the spread of respiratory pathogens through restrictions on aerosol generating procedures (AGPs). Evaluating the risk that AGPs pose in terms of SARS-CoV-2 transmission is complex, and measuring dental aerosols is challenging. To date, few studies focus on intra-oral suction. This study sought to assess the effectiveness of commonly used intra-oral suction devices on aerosol mitigation. METHODS: Ultrasonic scaling and high-speed handpiece procedures were undertaken to generate aerosol particles. Multiple particle sensors were positioned near the oral cavity. Sensor data were extracted using single board computers with custom in-house Bash code. Different high-volume and low-volume suction devices, both static and dynamic, were evaluated for their efficacy in preventing particle escape during procedures. RESULTS: In all AGPs the use of any suction device tested resulted in a significant reduction in particle counts compared with no suction. Low-volume and static suction devices showed spikes in particle count demonstrating moments where particles were able to escape from the oral cavity. High-volume dynamic suction devices, however, consistently reduced the particle count to background levels, appearing to eliminate particle escape. CONCLUSIONS: Dynamic high-volume suction devices that follow the path of the aerosol generating device effectively eliminate aerosol particles escaping from the oral cavity, in contrast to static devices which allow periodic escape of aerosol particles. Measuring the risk of SARS-CoV-2 transmission in a dental setting is multi-factorial; however, these data suggest that the appropriate choice of suction equipment may further reduce the risk from AGPs.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Humans , Pandemics/prevention & control , Respiratory Aerosols and Droplets , Ultrasonics
5.
Pathogens ; 10(2)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578802

ABSTRACT

Periodontitis (PD) shows an association with rheumatoid arthritis (RA) and systemic inflammation. Periodontal pathogens, namely Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, are proposed to be capable of inducing citrullination of peptides in the gingiva, inducing the formation of anti-citrullinated protein antibodies (ACPAs) within susceptible hosts. Here, we sought to investigate whether periodontal treatment influenced systemic inflammation and antibody titres to P. gingivalis, A. actinomycetemcomitans, Prevotella intermedia and ACPA in 42 systemically health patients with periodontal disease. Subgingival plaque and serum samples were collected from study participants before (baseline) and 90 days after treatment to analyse the abundance of specific bacteria and evaluate anti-bacterial antibodies, C-reactive protein (CRP), tumour necrosis factor α (TNF-α), interleukin 6 (IL-6) and ACPA in serum. Following treatment, all patients showed reduced periodontal inflammation. Despite observing a weak positive correlation between CRP and IL-6 with periodontal inflammation at baseline, we observed no significant reductions in any indicators of systemic inflammation 90 days after treatment. In contrast, anti-P. gingivalis IgG significantly reduced post-treatment (p < 0.001, Wilcoxon signed rank test), although no changes were observed for other antibody titres. Patients who had detectable P. gingivalis in subgingival plaques had significantly higher anti-P. gingivalis IgG and ACPA titres, suggesting a potential association between P. gingivalis colonisation and systemic antibody titres.

6.
J Clin Periodontol ; 47(9): 1087-1097, 2020 09.
Article in English | MEDLINE | ID: mdl-32628781

ABSTRACT

OBJECTIVE: This study sought to investigate whether the immediate systemic inflammatory response following full-mouth debridement differs following use of hand compared with ultrasonic instruments. METHODS: Thirty-nine periodontitis patients were randomized to treatment with full-mouth debridement using either hand or ultrasonic instrumentation completed within 24 hr. Serum and periodontal clinical parameters were collected at baseline, day 1, day 7 and day 90 post-treatment. Differences in systemic inflammatory markers were assessed using general linear models at each timepoint, corrected for age, gender, smoking status, body mass index and baseline levels of each marker. RESULTS: Across all patients, serum C-reactive protein increased at day 1, with no differences between hand and ultrasonic groups (p(adjusted) = .22). There was no difference between groups in interleukin-6 (p(adjusted) = .29) or tumour necrosis factor α (p(adjusted) = .53) at day 1. Inflammatory markers returned to baseline levels by day 7. Treatment resulted in equal and marked improvements in clinical parameters in both groups; however, total treatment time was on average shorter for ultrasonic instruments (p(adjusted) = .002). CONCLUSIONS: Ultrasonic instrumentation resulted in shorter treatment time with comparable clinical outcomes. Levels of serum C-reactive protein at day 1 were similar following debridement with hand or ultrasonic instruments.


Subject(s)
Ultrasonic Therapy , Ultrasonics , Dental Scaling , Humans , Periodontal Index , Systemic Inflammatory Response Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...