Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 246: 116652, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32747284

ABSTRACT

Polysaccharides are promising macromolecular platforms for use in the life sciences. Here, bioactive cellulose, pullulan, and dextran valproates are characterized hydrodynamically by sedimentation velocity and thermodynamically by sedimentation equilibrium analytical ultracentrifugation. Using sedimentation-diffusion analysis of sedimentation velocity experiments by numerical solution of the Lamm equation enabled the calculation of sedimentation and diffusion coefficients, and consequently molar masses. Sedimentation equilibrium experiments were then also used to determine the average molar masses. The corresponding set of data, with independently performed self-diffusion measurements by nuclear magnetic resonance spectroscopy, and together with size exclusion chromatography molar masses by coupling to refractive index-, viscometric-, and multi-angle laser light scattering detection, were subsequently correlated to each other by the hydrodynamic invariant and sedimentation parameter. We assess statistically most relevant average values of the molar masses of these polysaccharide valproates with relevant macromolecular conformational characteristics.


Subject(s)
Cellulose/chemistry , Dextrans/chemistry , Glucans/chemistry , Valproic Acid/chemistry , Chromatography, Gel , Diffusion , Hydrodynamics , Kinetics , Magnetic Resonance Spectroscopy , Molecular Weight , Solutions , Structure-Activity Relationship , Thermodynamics , Ultracentrifugation
2.
Materials (Basel) ; 5(4): 617-633, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-28816999

ABSTRACT

A standard X-observe NMR probe was equipped with a z-gradient coil to enable high-sensitivity pulsed field gradient NMR diffusion studies of Li⁺ and Cs⁺ cations of aqueous salt solutions in a high-porosity mesocellular silica foam (MCF) and of CO2 adsorbed in metal-organic frameworks (MOF). The coil design and the necessary probe modifications, which yield pulsed field gradients of up to ±16.2Tm-1, are introduced. The system was calibrated at 2H resonance frequency and successfully applied for diffusion studies at 7Li, 23Na, 13C and 133Cs frequencies. Significant reductions of the diffusivities of the cations in LiClac and CsClac solution introduced into MCFs are observed. By comparison of the diffusion behavior with the bulk solutions, a tortuosity of the silica foam of 4.5 ± 0.6 was derived. Single component self-diffusion of CO2 and CH4 (measured by ¹H NMR) as well as self-diffusion of the individual components in CO2/CH4 mixtures was studied in the MOF CuBTC. The experimental results confirm high mobilities of the adsorbed gases and trends for diffusion separation factors predicted by MD simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...