Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 43454, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28290537

ABSTRACT

Compact, broadband, and high-resolution spectrometers are appealing for sensing applications, but difficult to fabricate. Here we show using calibration data a spectrometer based on a multimode waveguide with 2 GHz resolution, 250 GHz bandwidth, and a 1.6 mm × 2.1 mm footprint. Typically, such spectrometers have a bandwidth limited by the number of modes supported by the waveguide. In this case, an on-chip mode-exciting element is used to repeatably excite distinct collections of waveguide modes. This increases the number of independent spectral channels from the number of modes to this number squared, resulting in an extension of the usable range.

2.
Sci Rep ; 6: 38801, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27934926

ABSTRACT

For on-chip interconnects, an ideal light source should have an ultralow energy consumption per bandwidth (operating en-ergy) as well as sufficient output power for error-free detection. Nanocavity lasers have been considered the most ideal for smaller operating energy. However, they have a challenge in obtaining a sufficient output power. Here, as an alternative, we propose an ultrahigh-speed microcavity laser structure, based on a vertical cavity with a high-contrast grating (HCG) mirror for transverse magnetic (TM) polarisation. By using the TM HCG, a very small mode volume and an un-pumped compact optical feedback structure can be realised, which together tailor the frequency response function for achieving a very high speed at low injection currents. Furthermore, light can be emitted laterally into a Si waveguide. From an 1.54-µm optically-pumped laser, a 3-dB frequency of 27 GHz was obtained at a pumping level corresponding to sub-mA. Using measured 3-dB frequen-cies and calculated equivalent currents, the modulation current efficiency factor (MCEF) is estimated to be 42.1 GHz/mA1/2, which is superior among microcavity lasers. This shows a high potential for a very high speed at low injection currents or avery small heat generation at high bitrates, which are highly desirable for both on-chip and off-chip applications.

3.
Opt Express ; 24(3): 2084-97, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26906783

ABSTRACT

The microwave reflection coefficient is commonly used to characterize the impedance of high-speed optoelectronic devices. Error and uncertainty in equivalent circuit parameters measured using this data are systematically evaluated. The commonly used nonlinear least-squares method for estimating uncertainty is shown to give unsatisfactory and incorrect results due to the nonlinear relationship between the circuit parameters and the measured data. Markov chain Monte Carlo methods are shown to provide superior results, both for individual devices and for assessing within-die variation.

4.
Opt Express ; 22(1): 102-9, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24514971

ABSTRACT

We propose a super-channel flexible wavelength division multiplexing (WDM) receiver architecture. The receiver, which requires no optical filtering, only a pair (I and Q phases) of coherent optical detectors, and an electrical receiver system, can simultaneously recover multiple wavelength-multiplexed channels using cascaded optical and electrical down-conversion. The receiver data capacity increases in proportion to the number of electrical sub-carrier channels. The proposed receiver concept has been described using a six-channel WDM receiver, and a two-channel ( ± 25 GHz) receiver IC, which is a key block of the WDM receiver, has been successfully demonstrated with two and three 2.5 Gb/s binary-phase-shift-key (BPSK) modulated channels.

5.
Opt Express ; 21(22): 25901-6, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24216816

ABSTRACT

High-linearity modified uni-traveling carrier photodiodes on silicon-on-insulator with low AM-to-PM conversion factor are demonstrated. The devices deliver more than 2.5 dBm RF output power up to 40 GHz and have an output third order intercept point of 30 dBm at 20 GHz. Photodiode arrays exceed a saturation current-bandwidth-product of 630 mA · GHz and reach unsaturated RF output power levels of 10 dBm at 20 GHz.

6.
Opt Express ; 21(13): 15634-44, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23842349

ABSTRACT

A new method of simulating photodiode nonlinearities is proposed. This model includes the effects of non-uniform absorption in three dimensions, self-heating, and is compatible with circuit components defined in the frequency domain, such as transmission lines. The saturated output power and third order output intercept points of two different waveguide photodiodes are simulated, with excellent agreement between measurement and theory. The technique is then used to provide guidance for the future design of linear waveguide-based photodetectors.

7.
Opt Express ; 20(7): 7488-95, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22453428

ABSTRACT

We have fabricated and characterized a germanium on silicon uni-traveling carrier photodetector for analog and coherent communications applications. The device has a bandwidth of 20GHz, a large-signal 1dB saturation photocurrent of 20mA at -3V, and a low thermal impedance of 520K/W.


Subject(s)
Germanium/chemistry , Photometry/instrumentation , Silicon/chemistry , Electron Transport/drug effects , Equipment Design , Equipment Failure Analysis , Germanium/radiation effects , Light , Silicon/radiation effects
8.
Opt Express ; 19(26): B385-90, 2011 Dec 12.
Article in English | MEDLINE | ID: mdl-22274046

ABSTRACT

We demonstrate a flip-chip bonded modified uni-traveling carrier (MUTC) photodiode with an RF output power of 0.75 W (28.8 dBm) at 15 GHz and OIP3 as high as 59 dBm. The photodiode has a responsivity of 0.7 A/W, 3-dB bandwidth > 15 GHz, and saturation photocurrent > 180 mA at 11 V reverse bias.

9.
Opt Express ; 18(3): 2317-24, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20174061

ABSTRACT

Accurately characterizing third order intermodulation distortion (IMD3) in high-linearity photodiodes is challenging. Two measurement techniques are evaluated-a standard two-tone measurement and a more complicated three-tone measurement technique to measure IMD3. A model of the measurement system is developed and used to analyze the limitations of the two techniques in determining the distortion of highly linear photodiodes. Experimental validation is provided by comparing the simulation trends with IMD3 results measured on two types of waveguide photodiodes: 1) an InP based uni-traveling-carrier (UTC) photodiode and 2) a Ge n-i-p waveguide photodetector on Silicon-on-Insulator (SOI) substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...