Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 43(13): 4802-9, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19673268

ABSTRACT

Recent and historical deposition of mercury (Hg) was examined over a broad geographic area from southwestern Northwest Territories to Labrador and from the U.S. Northeast to northern Ellesmere Island using dated sediment cores from 50 lakes (18 in midlatitudes (41-50 degrees N), 14 subarctic (51-64 degrees N) and 18 in the Arctic (65-83 degrees N)). Distinct increases of Hg overtime were observed in 76% of Arctic, 86% of subarctic and 100% of midlatitude cores. Subsurface maxima in Hg depositional fluxes (microg m(-2) y(-1)) were observed in only 28% of midlatitude lakes and 18% of arctic lakes, indicating little recent reduction of inputs. Anthropogenic Hg fluxes adjusted for sediment focusing and changes in sedimentation rates (deltaF(adj,F)) ranged from -22.9 to 61 microg m(-2) y(-1) and were negatively correlated (r = -0.57, P < 0.001) with latitude. Hg flux ratios (FRs; post-1990)/pre-1850) ranged from 0.5 to 7.7. The latitudinal trend for Hg deltaF(adj,F) values showed excellent agreement with predictions of the global mercury model, GRAHM for the geographic location of each lake (r = 0.933, P < 0.001). The results are consistent with a scenario of slow atmospheric oxidation of mercury, and slow deposition of reactive mercury emissions, declining with increasing latitude away from emission sources in the midlatitudes, and support the view that there are significant anthropogenic Hg inputs in the Arctic.


Subject(s)
Geologic Sediments , Mercury/toxicity , Water Pollutants/analysis , Arctic Regions , Atmosphere , Canada , Environmental Monitoring/methods , Geography , Mercury/analysis , Oxygen/analysis , Time Factors , Water Pollution/analysis , Water Supply
2.
Naturwissenschaften ; 87(3): 137-41, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10798200

ABSTRACT

The Ward Hunt Ice Shelf (83 degrees N, 74 degrees W) is the largest remaining section of thick (> 10 m) land-fast sea ice along the northern coastline of Ellesmere Island, Canada. Extensive meltwater lakes and streams occur on the surface of the ice and are colonized by photosynthetic microbial mat communities. This High Arctic cryo-ecosystem is similar in several of its physical, biological and geochemical features to the McMurdo Ice Shelf in Antarctica. The ice-mats in both polar regions are dominated by filamentous cyanobacteria but also contain diatoms, chlorophytes, flagellates, ciliates, nematodes, tardigrades and rotifers. The luxuriant Ward Hunt consortia also contain high concentrations (10(7)-10(8) cm-2) of viruses and heterotrophic bacteria. During periods of extensive ice cover, such as glaciations during the Proterozoic, cryotolerant mats of the type now found in these polar ice shelf ecosystems would have provided refugia for the survival, growth and evolution of a variety of organisms, including multicellular eukaryotes.


Subject(s)
Ecosystem , Ice , Water Microbiology , Water/parasitology , Animals , Arctic Regions , Canada , Ciliophora/isolation & purification , Cyanobacteria/isolation & purification , Eukaryota/isolation & purification , Nematoda/isolation & purification , Rotifera/isolation & purification , Viruses/isolation & purification
3.
Nature ; 404(6777): 484-7, 2000 Mar 30.
Article in English | MEDLINE | ID: mdl-10761913

ABSTRACT

The effect of stratospheric ozone depletion on increases in ambient levels of solar ultraviolet (UV) radiation in high-latitude regions' has raised concerns about the response of northern ecosystems to environmental change. The concentration of coloured dissolved organic material, which is derived from terrestrial vegetation and acts as a screen for ultraviolet radiation, is low in high-latitude lakes. The underwater light environment in these lakes is therefore likely to be sensitive to small variations in the supply of this material, in addition to the effects of ozone depletion. Here we use fossil diatom assemblages in combination with bio-optical models to estimate the magnitude of past variations in the underwater light regime of a lake at the boreal tree line. We find large shifts in underwater UV-B, UV-A and photosynthetically available radiation associated with changes in the input of coloured dissolved organic material into subarctic lakes during the Holocene. The inferred changes in biological exposure to UV radiation were at least two orders of magnitude greater than those associated with moderate (30%) ozone depletion. Our findings indicate that freshwater ecosystems at present located across vegetation gradients will experience significant shifts in underwater spectral irradiance through the effects of climate change on catchment vegetation and the export of coloured dissolved organic material.


Subject(s)
Climate , Diatoms/radiation effects , Ecosystem , Ozone , Ultraviolet Rays , Arctic Regions , Environment , Fossils , Fresh Water , Geologic Sediments , Greenhouse Effect , Photosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...