Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 291(2): 237-255, 2024 01.
Article in English | MEDLINE | ID: mdl-37450366

ABSTRACT

Zinc Finger DNA-binding domain-containing proteins are the most populous family among eukaryotic transcription factors. Among these, members of the BTB domain-containing ZBTB sub-family are mostly known for their transcriptional repressive functions. In this Viewpoint article, we explore molecular mechanisms that potentially diversify the function of ZBTB proteins based on their homo and heterodimerization, alternative splicing and post-translational modifications. We describe how the BTB domain is as much a scaffold for the assembly of co-repressors, as a domain that regulates protein stability. We highlight another mechanism that regulates ZBTB protein stability: phosphorylation in the zinc finger domain. We explore the non-transcriptional, structural roles of ZBTB proteins and highlight novel findings that describe the ability of ZBTB proteins to associate with poly adenosine ribose in the nucleus during the DNA damage response. Herein, we discuss the contribution of BTB domain scaffolds to the formation of transcriptional repressive complexes, to chromosome compartmentalization and their non-transcriptional, purely structural functions in the nucleus.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , Dimerization , Zinc Fingers , Protein Binding
2.
Life Sci Alliance ; 5(11)2022 11.
Article in English | MEDLINE | ID: mdl-36096675

ABSTRACT

The BTB domain is an oligomerization domain found in over 300 proteins encoded in the human genome. In the family of BTB domain and zinc finger-containing (ZBTB) transcription factors, 49 members share the same protein architecture. The N-terminal BTB domain is structurally conserved among the family members and serves as the dimerization site, whereas the C-terminal zinc finger motifs mediate DNA binding. The available BTB domain structures from this family reveal a natural inclination for homodimerization. In this study, we investigated the potential for heterodimer formation in the cellular environment. We selected five BTB homodimers and four heterodimer structures. We performed cell-based binding assays with fluorescent protein-BTB domain fusions to assess dimer formation. We tested the binding of several BTB pairs, and we were able to confirm the heterodimeric physical interaction between the BTB domains of PATZ1 and PATZ2, previously reported only in an interactome mapping experiment. We also found this pair to be co-expressed in several immune system cell types. Finally, we used the available structures of BTB domain dimers and newly constructed models in extended molecular dynamics simulations (500 ns) to understand the energetic determinants of homo- and heterodimer formation. We conclude that heterodimer formation, although frequently described as less preferred than homodimers, is a possible mechanism to increase the combinatorial specificity of this transcription factor family.


Subject(s)
Transcription Factors , Amino Acid Sequence , Gene Expression Regulation , Humans , Transcription Factors/genetics , Zinc Fingers/genetics
3.
Free Radic Biol Med ; 182: 260-275, 2022 03.
Article in English | MEDLINE | ID: mdl-35240292

ABSTRACT

Camelidae derived single-domain antibodies (sdAbs), commonly known as nanobodies (Nbs), are the smallest antibody fragments with full antigen-binding capacity. Owing to their desirable properties such as small size, high specificity, strong affinity, excellent stability, and modularity, nanobodies are on their way to overtake conventional antibodies in terms of popularity. To date, a broad range of nanobodies have been generated against different molecular targets with applications spanning basic research, diagnostics, and therapeutics. In the field of molecular imaging, nanobody-based probes have emerged as a powerful tool. Radioactive or fluorescently labeled nanobodies are now used to detect and track many targets in different biological systems using imaging techniques. In this review, we provide an overview of the use of nanobodies as molecular probes. Additionally, we discuss current techniques for the generation, conjugation, and intracellular delivery of nanobodies.


Subject(s)
Single-Domain Antibodies , Antibodies , Molecular Imaging , Molecular Probes , Phagocytosis
4.
Acta Crystallogr D Struct Biol ; 76(Pt 6): 581-593, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32496219

ABSTRACT

PATZ1 is a ubiquitously expressed transcriptional repressor belonging to the ZBTB family that is functionally expressed in T lymphocytes. PATZ1 targets the CD8 gene in lymphocyte development and interacts with the p53 protein to control genes that are important in proliferation and in the DNA-damage response. PATZ1 exerts its activity through an N-terminal BTB domain that mediates dimerization and co-repressor interactions and a C-terminal zinc-finger motif-containing domain that mediates DNA binding. Here, the crystal structures of the murine and zebrafish PATZ1 BTB domains are reported at 2.3 and 1.8 Šresolution, respectively. The structures revealed that the PATZ1 BTB domain forms a stable homodimer with a lateral surface groove, as in other ZBTB structures. Analysis of the lateral groove revealed a large acidic patch in this region, which contrasts with the previously resolved basic co-repressor binding interface of BCL6. A large 30-amino-acid glycine- and alanine-rich central loop, which is unique to mammalian PATZ1 amongst all ZBTB proteins, could not be resolved, probably owing to its flexibility. Molecular-dynamics simulations suggest a contribution of this loop to modulation of the mammalian BTB dimerization interface.


Subject(s)
BTB-POZ Domain , Neoplasm Proteins/chemistry , Repressor Proteins/chemistry , Zebrafish Proteins/chemistry , Animals , Mice , Protein Multimerization , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...