Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 10(5): 1793-1807, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38648355

ABSTRACT

Chagas disease, caused by Trypanosoma cruzi, stands as the primary cause of dilated cardiomyopathy in the Americas. Macrophages play a crucial role in the heart's response to infection. Given their functional and phenotypic adaptability, manipulating specific macrophage subsets could be vital in aiding essential cardiovascular functions including tissue repair and defense against infection. PPARα are ligand-dependent transcription factors involved in lipid metabolism and inflammation regulation. However, the role of fenofibrate, a PPARα ligand, in the activation profile of cardiac macrophages as well as its effect on the early inflammatory and fibrotic response in the heart remains unexplored. The present study demonstrates that fenofibrate significantly reduces not only the serum activity of tissue damage biomarker enzymes (LDH and GOT) but also the circulating proportions of pro-inflammatory monocytes (CD11b+ LY6Chigh). Furthermore, both CD11b+ Ly6Clow F4/80high macrophages (MΦ) and recently differentiated CD11b+ Ly6Chigh F4/80high monocyte-derived macrophages (MdMΦ) shift toward a resolving phenotype (CD206high) in the hearts of fenofibrate-treated mice. This shift correlates with a reduction in fibrosis, inflammation, and restoration of ventricular function in the early stages of Chagas disease. These findings encourage the repositioning of fenofibrate as a potential ancillary immunotherapy adjunct to antiparasitic drugs, addressing inflammation to mitigate Chagas disease symptoms.


Subject(s)
Chagas Cardiomyopathy , Fenofibrate , Macrophages , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Animals , Mice , Chagas Cardiomyopathy/drug therapy , Macrophages/drug effects , Myocardium/pathology , Male , Trypanosoma cruzi/drug effects , Mice, Inbred C57BL , Disease Models, Animal , Myocarditis/drug therapy , Myocarditis/parasitology
2.
ACS Infect Dis ; 9(2): 213-220, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36661566

ABSTRACT

Chronic cardiomyopathy is one of the most relevant outcomes of Chagas disease associated with parasite persistence and exacerbated inflammatory response. Fenofibrate, a third generation fibric acid derivative and peroxisome proliferator-activated receptor-α ligand, is involved in the regulation of inflammatory response. However, the participation of macrophages in this scenario has not been elucidated. Here we show, for the first time, that macrophages play a fundamental role in the fenofibrate-mediated modulation of heart pro-inflammatory response and fibrosis caused by the infection with Trypanosoma cruzi. Furthermore, macrophages are required for fenofibrate to improve the loss of ventricular function and this restoration correlates with an anti-inflammatory microenvironment. Understanding the contributions of macrophages to the healing properties of fenofibrate reinforces its potential use as a therapeutic drug, with the aim of helping to solve a public health problem, such as chronic Chagas disease.


Subject(s)
Cardiomyopathies , Chagas Cardiomyopathy , Chagas Disease , Fenofibrate , Humans , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Chagas Cardiomyopathy/drug therapy , Chagas Cardiomyopathy/complications , Chagas Cardiomyopathy/parasitology , Chagas Disease/drug therapy , Chagas Disease/parasitology , Cardiomyopathies/drug therapy , Cardiomyopathies/complications , Macrophages
3.
Front Immunol ; 10: 2955, 2019.
Article in English | MEDLINE | ID: mdl-31993046

ABSTRACT

Chagas disease is caused by Trypanosoma cruzi infection and represents an important public health concern in Latin America. Macrophages are one of the main infiltrating leukocytes in response to infection. Parasite persistence could trigger a sustained activation of these cells, contributing to the damage observed in this pathology, particularly in the heart. HP24, a pyridinecarboxylic acid derivative, is a new PPARγ ligand that exerts anti-inflammatory and pro-angiogenic effects. The aim of this work was to deepen the study of the mechanisms involved in the pro-angiogenic and anti-inflammatory effects of HP24 in T. cruzi-infected macrophages, which have not yet been elucidated. We show for the first time that HP24 increases expression of VEGF-A and eNOS through PI3K/AKT/mTOR and PPARγ pathways and that HP24 inhibits iNOS expression and NO release, a pro-inflammatory mediator, through PPARγ-dependent mechanisms. Furthermore, this study shows that HP24 modulates H2O2 production in a PPARγ-dependent manner. It is also demonstrated that this new PPARγ ligand inhibits the NF-κB pathway. HP24 inhibits IKK phosphorylation and IκB-α degradation, as well as p65 translocation to the nucleus in a PPARγ-dependent manner. In Chagas disease, both the sustained increment in pro-inflammatory mediators and microvascular abnormalities are crucial aspects for the generation of cardiac damage. Elucidating the mechanism of action of new PPARγ ligands is highly attractive, given the fact that it can be used as an adjuvant therapy, particularly in the case of Chagas disease in which inflammation and tissue remodeling play an important role in the pathophysiology of this disease.


Subject(s)
Angiogenesis Inducing Agents/immunology , Antiprotozoal Agents/administration & dosage , Chagas Disease/immunology , Isonicotinic Acids/administration & dosage , Macrophages/immunology , Reactive Nitrogen Species/immunology , Reactive Oxygen Species/immunology , Animals , Anti-Inflammatory Agents/administration & dosage , Antiprotozoal Agents/chemistry , Chagas Disease/genetics , Chagas Disease/parasitology , Humans , Hydrogen Peroxide/immunology , Isonicotinic Acids/chemistry , Macrophages/drug effects , Male , Mice , Mice, Inbred BALB C , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/immunology , PPAR gamma/genetics , PPAR gamma/immunology , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/physiology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...