Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Assoc Lab Anim Sci ; 61(4): 333-343, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35738839

ABSTRACT

Light and lighting protocols of animal research facilities are critically important to the outcomes of biomedical research that uses animals. Previous studies from our laboratory showed that the wavelength (color) of light in animal housing areas affects the nocturnal melatonin signal that temporally coordinates circadian rhythms in rodents. Here, we tested the hypothesis that exposure to LED light enriched in the blue-appearing portion (460-480 nm) of the visible spectrum during the light phase (bLAD) influences circadian concentrations of select neuroendocrine hormones in adolescent Sprague-Dawley rats. Male and female rats (4 to 5 wk old) were housed on a novel IVC system under a 12L:12D in either cool-white fluorescent (control, n = 72) or bLAD (experimental, n = 72) lighting. Every third day, body weight and food and water consumption were measured. On Day 30, rats were anesthetized with ketamine/xylazine and terminal collection of arterial blood was performed to quantify serum concentrations of melatonin, corticosterone, insulin, and glucose at 6 circadian time points (0400, 0800, 1200, 1600, 2000, 2400). As compared with male and female rats housed under cool white fluorescent (CWF) lighting, rats in bLAD lighting showed a 6-fold higher peak in dark phase serum melatonin (P < 0.05). Effects on serum corticosterone were sex dependent, as CWF and bLAD females had significantly higher corticosterone levels than did CWF and bLAD males, respectively. CWF and bLAD females had significantly higher serum glucose overall as compared with males. However, serum insulin was not affected by sex (M or F) or lighting conditions (CWF or bLAD). These data show that housing Sprague-Dawley rats under bLAD lighting conditions increases circadian peaks of melatonin without increasing serum levels of corticosterone, glucose or insulin, indicating less variation of circadian cycling of key neuroendocrine hormones in bLAD-exposed rats.


Subject(s)
Melatonin , Animals , Circadian Rhythm , Corticosterone , Female , Glucose , Insulin , Lighting , Male , Rats , Rats, Sprague-Dawley
2.
Mol Biol Cell ; 19(1): 414-23, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18003977

ABSTRACT

The Fcgamma receptor FcRn transports immunoglobulin G (IgG) so as to avoid lysosomal degradation and to carry it bidirectionally across epithelial barriers to affect mucosal immunity. Here, we identify a calmodulin-binding site within the FcRn cytoplasmic tail that affects FcRn trafficking. Calmodulin binding to the FcRn tail is direct, calcium-dependent, reversible, and specific to residues comprising a putative short amphipathic alpha-helix immediately adjacent to the membrane. FcRn mutants with single residue substitutions in this motif, or FcRn mutants lacking the cytoplasmic tail completely, exhibit a shorter half-life and attenuated transcytosis. Chemical inhibitors of calmodulin phenocopy the mutant FcRn defect in transcytosis. These results suggest a novel mechanism for regulation of IgG transport by calmodulin-dependent sorting of FcRn and its cargo away from a degradative pathway and into a bidirectional transcytotic route.


Subject(s)
Calcium/metabolism , Calmodulin/metabolism , Endocytosis , Histocompatibility Antigens Class I/metabolism , Immunoglobulin G/metabolism , Receptors, Fc/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Cell Line , Cell Polarity , Dogs , Half-Life , Histocompatibility Antigens Class I/chemistry , Humans , Intestines/cytology , Lysosomes/metabolism , Mice , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Protein Transport , Receptors, Fc/chemistry
3.
J Gen Virol ; 86(Pt 9): 2421-2432, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16099899

ABSTRACT

The capacity of herpes simplex virus type 1 (HSV-1) to replicate in vitro decreases tremendously when animal cell cultures are exposed to ligands of both the alpha/beta interferon (IFN-alpha/beta) receptor and IFN-gamma receptor prior to inoculation with low m.o.i.s of HSV-1. However, the available evidence provides no insight into the possible mechanisms by which co-activation of the IFN-alpha/beta- and IFN-gamma-signalling pathways produces this effect. Therefore, it has not been possible to differentiate between whether these observations represent an important in vitro model of host immunological suppression of HSV-1 infection or an irrelevant laboratory phenomenon. Therefore, the current study was initiated to determine whether co-activation of the host cell's IFN-alpha/beta and IFN-gamma pathways either (i) induced death of HSV-1-infected cells such that virus replication was unable to occur; or (ii) disrupted one or more steps in the process of HSV-1 replication. To this end, multiple steps in HSV-1 infection were compared in populations of Vero cells infected with HSV-1 strain KOS (m.o.i. of 2.5) and exposed to ligands of the IFN-alpha/beta receptor, the IFN-gamma receptor or both. The results demonstrated that IFN-beta and IFN-gamma interact in a synergistic manner to block the efficient synthesis of viral DNA and nucleocapsid formation in HSV-1-infected cells and do so without compromising host-cell viability. It was inferred that IFN-mediated suppression of HSV-1 replication may be a central mechanism by which the host immune system limits the spread of HSV-1 infection in vivo.


Subject(s)
Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Interferon-beta/pharmacology , Interferon-gamma/pharmacology , Virion/metabolism , Virus Replication/drug effects , Animals , Cell Line , Chlorocebus aethiops , Cytopathogenic Effect, Viral/drug effects , DNA, Viral/biosynthesis , DNA, Viral/drug effects , Drug Synergism , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/physiology , Receptors, Interferon , Vero Cells , Virion/drug effects
4.
J Theor Biol ; 234(3): 439-54, 2005 Jun 07.
Article in English | MEDLINE | ID: mdl-15784277

ABSTRACT

Several studies suggest that the innate interferons (IFNs), IFN-alpha and IFN-beta, can act in concert with IFN-gamma to synergistically inhibit the replication of cytomegalovirus and herpes simplex virus type 1 (HSV-1). The significance of this observation is not yet agreed upon in large part because the nature and magnitude of the interaction between IFN-alpha/beta and IFN-gamma is not well defined. In the current study, we resolve this issue by demonstrating three points. First, the hyperbolic tangent function, tanh (x), can be used to describe the individual effects of IFN-beta or IFN-gamma on HSV-1 replication over a 320,000-fold range of IFN concentration. Second, pharmacological methods prove that IFN-beta and IFN-gamma interact in a greater-than-additive manner to inhibit HSV-1 replication. Finally, the potency with which combinations of IFN-beta and IFN-gamma inhibit HSV-1 replication is accurately predicted by multiplying the individual inhibitory effects of each cytokine. Thus, IFN-beta and IFN-gamma interact in a multiplicative manner. We infer that a primary antiviral function of IFN-gamma lies in its capacity to multiply the potency with which IFN-alpha/beta restricts HSV-1 replication in vivo. This hypothesis has important ramifications for understanding how T lymphocyte-secreted cytokines such as IFN-gamma can force herpesviruses into a latent state without destroying the neurons or leukocytes that continue to harbor these viral infections for the lifetime of the host.


Subject(s)
Herpes Simplex/immunology , Herpesvirus 1, Human/physiology , Interferon-beta/immunology , Interferon-gamma/immunology , Models, Immunological , Animals , Drug Synergism , Herpes Simplex/virology , T-Lymphocytes/immunology , Virus Latency , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...