Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Open ; 14(3): e081455, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38508633

ABSTRACT

INTRODUCTION: SCALE-UP II aims to investigate the effectiveness of population health management interventions using text messaging (TM), chatbots and patient navigation (PN) in increasing the uptake of at-home COVID-19 testing among patients in historically marginalised communities, specifically, those receiving care at community health centres (CHCs). METHODS AND ANALYSIS: The trial is a multisite, randomised pragmatic clinical trial. Eligible patients are >18 years old with a primary care visit in the last 3 years at one of the participating CHCs. Demographic data will be obtained from CHC electronic health records. Patients will be randomised to one of two factorial designs based on smartphone ownership. Patients who self-report replying to a text message that they have a smartphone will be randomised in a 2×2×2 factorial fashion to receive (1) chatbot or TM; (2) PN (yes or no); and (3) repeated offers to interact with the interventions every 10 or 30 days. Participants who do not self-report as having a smartphone will be randomised in a 2×2 factorial fashion to receive (1) TM with or without PN; and (2) repeated offers every 10 or 30 days. The interventions will be sent in English or Spanish, with an option to request at-home COVID-19 test kits. The primary outcome is the proportion of participants using at-home COVID-19 tests during a 90-day follow-up. The study will evaluate the main effects and interactions among interventions, implementation outcomes and predictors and moderators of study outcomes. Statistical analyses will include logistic regression, stratified subgroup analyses and adjustment for stratification factors. ETHICS AND DISSEMINATION: The protocol was approved by the University of Utah Institutional Review Board. On completion, study data will be made available in compliance with National Institutes of Health data sharing policies. Results will be disseminated through study partners and peer-reviewed publications. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov: NCT05533918 and NCT05533359.


Subject(s)
COVID-19 , Population Health Management , Adolescent , Humans , Community Health Centers , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Randomized Controlled Trials as Topic , SARS-CoV-2 , United States , Pragmatic Clinical Trials as Topic
2.
Transl Behav Med ; 13(6): 389-399, 2023 06 09.
Article in English | MEDLINE | ID: mdl-36999823

ABSTRACT

Racial/ethnic minority, low socioeconomic status, and rural populations are disproportionately affected by COVID-19. Developing and evaluating interventions to address COVID-19 testing and vaccination among these populations are crucial to improving health inequities. The purpose of this paper is to describe the application of a rapid-cycle design and adaptation process from an ongoing trial to address COVID-19 among safety-net healthcare system patients. The rapid-cycle design and adaptation process included: (a) assessing context and determining relevant models/frameworks; (b) determining core and modifiable components of interventions; and (c) conducting iterative adaptations using Plan-Do-Study-Act (PDSA) cycles. PDSA cycles included: Plan. Gather information from potential adopters/implementers (e.g., Community Health Center [CHC] staff/patients) and design initial interventions; Do. Implement interventions in single CHC or patient cohort; Study. Examine process, outcome, and context data (e.g., infection rates); and, Act. If necessary, refine interventions based on process and outcome data, then disseminate interventions to other CHCs and patient cohorts. Seven CHC systems with 26 clinics participated in the trial. Rapid-cycle, PDSA-based adaptations were made to adapt to evolving COVID-19-related needs. Near real-time data used for adaptation included data on infection hot spots, CHC capacity, stakeholder priorities, local/national policies, and testing/vaccine availability. Adaptations included those to study design, intervention content, and intervention cohorts. Decision-making included multiple stakeholders (e.g., State Department of Health, Primary Care Association, CHCs, patients, researchers). Rapid-cycle designs may improve the relevance and timeliness of interventions for CHCs and other settings that provide care to populations experiencing health inequities, and for rapidly evolving healthcare challenges such as COVID-19.


Racial/ethnic minority, low socioeconomic status, and rural populations experience a disproportionate burden of COVID-19. Finding ways to address COVID-19 among these populations is crucial to improving health inequities. The purpose of this paper is to describe the rapid-cycle design process for a research project to address COVID-19 testing and vaccination among safety-net healthcare system patients. The project used real-time information on changes in COVID-19 policy (e.g., vaccination authorization), local case rates, and the capacity of safety-net healthcare systems to iteratively change interventions to ensure interventions were relevant and timely for patients. Key changes that were made to interventions included a change to the study design to include vaccination as a focus of the interventions after the vaccine was authorized; change in intervention content according to the capacity of local Community Health Centers to provide testing to patients; and changes to intervention cohorts such that priority groups of patients were selected for intervention based on characteristics including age, residency in an infection "hot spot," or race/ethnicity. Iteratively improving interventions based on real-time data collection may increase intervention relevance and timeliness, and rapid-cycle adaptions can be successfully implemented in resource constrained settings like safety-net healthcare systems.


Subject(s)
COVID-19 , Ethnicity , Humans , COVID-19 Testing , Minority Groups , COVID-19/prevention & control , Delivery of Health Care
SELECTION OF CITATIONS
SEARCH DETAIL
...