Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(1): e0262119, 2022.
Article in English | MEDLINE | ID: mdl-35045103

ABSTRACT

Cell viability, an essential measurement for cell therapy products, lacks traceability. One of the most common cell viability tests is trypan blue dye exclusion where blue-stained cells are counted via brightfield imaging. Typically, live and dead cells are classified based on their pixel intensities which may vary arbitrarily making it difficult to compare results. Herein, a traceable absorbance microscopy method to determine the intracellular uptake of trypan blue is demonstrated. The intensity pixels of the brightfield images are converted to absorbance images which are used to calculate moles of trypan blue per cell. Trypan blue cell viability measurements, where trypan blue content in each cell is quantified, enable traceable live-dead classifications. To implement the absorbance microscopy method, we developed an open-source AbsorbanceQ application that generates quantitative absorbance images. The validation of absorbance microscopy is demonstrated using neutral density filters. Results from four different microscopes demonstrate a mean absolute deviation of 3% from the expected optical density values. When assessing trypan blue-stained Jurkat cells, the difference in intracellular uptake of trypan blue in heat-shock-killed cells using two different microscopes is 3.8%. Cells killed with formaldehyde take up ~50% less trypan blue as compared to the heat-shock-killed cells, suggesting that the killing mechanism affects trypan blue uptake. In a test mixture of approximately 50% live and 50% dead cells, 53% of cells were identified as dead (±6% standard deviation). Finally, to mimic batches of low-viability cells that may be encountered during a cell manufacturing process, viability was assessed for cells that were 1) overgrown in the cell culture incubator for five days or 2) incubated in DPBS at room temperature for five days. Instead of making live-dead classifications using arbitrary intensity values, absorbance imaging yields traceable units of moles that can be compared, which is useful for assuring quality for biomanufacturing processes.


Subject(s)
Cell Culture Techniques/methods , Jurkat Cells/cytology , Trypan Blue/chemistry , Cell Count , Cell Survival/drug effects , Formaldehyde/adverse effects , Humans , Jurkat Cells/chemistry , Microscopy
2.
Sci Transl Med ; 7(290): 290ra89, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-26041706

ABSTRACT

Currently, no approved therapeutics exist to treat or prevent infections induced by Ebola viruses, and recent events have demonstrated an urgent need for rapid discovery of new treatments. Repurposing approved drugs for emerging infections remains a critical resource for potential antiviral therapies. We tested ~2600 approved drugs and molecular probes in an in vitro infection assay using the type species, Zaire ebolavirus. Selective antiviral activity was found for 80 U.S. Food and Drug Administration-approved drugs spanning multiple mechanistic classes, including selective estrogen receptor modulators, antihistamines, calcium channel blockers, and antidepressants. Results using an in vivo murine Ebola virus infection model confirmed the protective ability of several drugs, such as bepridil and sertraline. Viral entry assays indicated that most of these antiviral drugs block a late stage of viral entry. By nature of their approved status, these drugs have the potential to be rapidly advanced to clinical settings and used as therapeutic countermeasures for Ebola virus infections.


Subject(s)
Antiviral Agents/therapeutic use , Drug Approval , Hemorrhagic Fever, Ebola/therapy , Molecular Probes , Animals , Bepridil/pharmacology , Ebolavirus/drug effects , Humans , Mice , Sertraline/pharmacology
3.
Mol Cancer Ther ; 11(7): 1432-42, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22474168

ABSTRACT

The use of combination drug regimens has dramatically improved the clinical outcome for patients with multiple myeloma. However, to date, combination treatments have been limited to approved drugs and a small number of emerging agents. Using a systematic approach to identify synergistic drug combinations, combination high-throughput screening (cHTS) technology, adenosine A2A and ß-2 adrenergic receptor (ß2AR) agonists were shown to be highly synergistic, selective, and novel agents that enhance glucocorticoid activity in B-cell malignancies. Unexpectedly, A2A and ß2AR agonists also synergize with melphalan, lenalidomide, bortezomib, and doxorubicin. An analysis of agonists, in combination with dexamethasone or melphalan in 83 cell lines, reveals substantial activity in multiple myeloma and diffuse large B-cell lymphoma cell lines. Combination effects are also observed with dexamethasone as well as bortezomib, using multiple myeloma patient samples and mouse multiple myeloma xenograft assays. Our results provide compelling evidence in support of development of A2A and ß2AR agonists for use in multi-drug combination therapy for multiple myeloma. Furthermore, use of cHTS for the discovery and evaluation of new targets and combination therapies has the potential to improve cancer treatment paradigms and patient outcomes.


Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Adrenergic beta-2 Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Multiple Myeloma/metabolism , Animals , Cell Line, Tumor , Cluster Analysis , Drug Screening Assays, Antitumor , Drug Synergism , Female , Gene Expression Profiling , High-Throughput Screening Assays , Humans , Male , Mice , Mice, SCID , Multiple Myeloma/genetics , Transcriptome , Xenograft Model Antitumor Assays
4.
Blood ; 116(4): 593-602, 2010 Jul 29.
Article in English | MEDLINE | ID: mdl-20382846

ABSTRACT

Using a combination high-throughput screening technology, multiple classes of drugs and targeted agents were identified that synergize with dexamethasone (Dex) in multiple myeloma (MM) cells. Performing combination screening with these enhancers, we discovered an unexpected synergistic interaction between adenosine receptor agonists and phosphodiesterase (PDE) inhibitors that displays substantial activity in a panel of MM and diffuse large B-cell lymphoma (DLBCL) cell lines and tumor cells from MM patients. We have used selective adenosine receptor agonists, antagonists, and PDE inhibitors as well as small interfering RNAs targeting specific molecular isoforms of these proteins to dissect the molecular mechanism of this synergy. The adenosine A2A receptor and PDE2, 3, 4, and 7 are important for activity. Drug combinations induce cyclic AMP (cAMP) accumulation and up-regulate PDE4B. We also observe rigorous mathematical synergy in 3-way combinations containing A2A agonists, PDE inhibitors, and Dex at multiple concentrations and ratios. Taken together, these data suggest that A2A agonist/PDE inhibitor combinations may be attractive as an adjunctive to clinical glucocorticoid containing regiments for patients with MM or DLBCL and confer benefit in both glucocorticoid-sensitive and -resistant populations.


Subject(s)
Adenosine A2 Receptor Agonists , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Drug Screening Assays, Antitumor/methods , Hematologic Neoplasms/drug therapy , Phosphodiesterase Inhibitors/administration & dosage , B-Lymphocytes/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Drug Delivery Systems , Drug Synergism , Glucocorticoids/administration & dosage , Glucocorticoids/pharmacology , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , High-Throughput Screening Assays/methods , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Phosphodiesterase Inhibitors/isolation & purification , Phosphodiesterase Inhibitors/pharmacology , Validation Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...