Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Robot ; 8(85): eadh1438, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38091424

ABSTRACT

Extra robotic arms (XRAs) are gaining interest in neuroscience and robotics, offering potential tools for daily activities. However, this compelling opportunity poses new challenges for sensorimotor control strategies and human-machine interfaces (HMIs). A key unsolved challenge is allowing users to proficiently control XRAs without hindering their existing functions. To address this, we propose a pipeline to identify suitable HMIs given a defined task to accomplish with the XRA. Following such a scheme, we assessed a multimodal motor HMI based on gaze detection and diaphragmatic respiration in a purposely designed modular neurorobotic platform integrating virtual reality and a bilateral upper limb exoskeleton. Our results show that the proposed HMI does not interfere with speaking or visual exploration and that it can be used to control an extra virtual arm independently from the biological ones or in coordination with them. Participants showed significant improvements in performance with daily training and retention of learning, with no further improvements when artificial haptic feedback was provided. As a final proof of concept, naïve and experienced participants used a simplified version of the HMI to control a wearable XRA. Our analysis indicates how the presented HMI can be effectively used to control XRAs. The observation that experienced users achieved a success rate 22.2% higher than that of naïve users, combined with the result that naïve users showed average success rates of 74% when they first engaged with the system, endorses the viability of both the virtual reality-based testing and training and the proposed pipeline.


Subject(s)
Exoskeleton Device , Robotics , Virtual Reality , Humans , Upper Extremity , Learning
2.
Article in English | MEDLINE | ID: mdl-37676798

ABSTRACT

As the population worldwide ages, there is a growing need for assistive technology and effective human-machine interfaces to address the wider range of motor disabilities that older adults may experience. Motor disabilities can make it difficult for individuals to perform basic daily tasks, such as getting dressed, preparing meals, or using a computer. The goal of this study was to investigate the effect of two weeks of training with a myoelectric computer interface (MCI) on motor functions in younger and older adults. Twenty people were recruited in the study: thirteen younger (range: 22-35 years old) and seven older (range: 61-78 years old) adults. Participants completed six training sessions of about 2 hours each, during which the activity of right and left biceps and trapezius were mapped into a control signal for the cursor of a computer. Results highlighted significant improvements in cursor control, and therefore in muscle coordination, in both groups. All participants with training became faster and more accurate, although people in different age range learned with a different dynamic. Results of the questionnaire on system usability and quality highlighted a general consensus about easiness of use and intuitiveness. These findings suggest that the proposed MCI training can be a powerful tool in the framework of assistive technologies for both younger and older adults. Further research is needed to determine the optimal duration and intensity of MCI training for different age groups and to investigate long-term effects of training on physical and cognitive function.

3.
Article in English | MEDLINE | ID: mdl-37639412

ABSTRACT

Cervical spinal cord injury (cSCI) often results in bilateral impairment of the arms, leading to difficulties in performing daily activities. However, little is known about the neuromotor alterations that affect the ability of individuals with cSCI to perform coordinated movements with both arms. To address this issue, we developed and tested a functional assessment that integrates clinical, kinematic, and muscle activity measures, including the evaluation of bilateral arm movements. Twelve subjects with a C5-C7 spinal lesion and six unimpaired subjects underwent an evaluation that included three tests: the Manual Muscle Test, Range Of Motion test and Arm stabilisation test, a subsection of the "Van Lieshout arm/hand function test". During the latter, we recorded kinematic and muscle activity data from the upper-body during the execution of a set of movements that required participants to stabilize both arms against gravity at different configurations. Analytical methods, including muscle synergies, spinal maps, and Principal Component Analysis, were used to analyse the data. Clinical tests detected limitations in shoulder abduction-flexion of cSCI participants and alterations in elbows-wrists motor function. The instrumented assessment provided insight into how these limitations impacted the ability of cSCI participants to perform bilateral movements. They exhibited severe difficulty in performing movements involving over-the-shoulder motion and shoulder internal rotation due to altered patterns of activity of the scapular stabilizer muscles, latissimus dorsi, pectoralis, and triceps. Our findings shed light on the bilateral neuromotor changes that occur post-cSCI addressing not only motor deficits, but also the underlying abnormal, weak, or silent muscle activations.


Subject(s)
Cervical Cord , Spinal Cord Injuries , Humans , Biomechanical Phenomena , Muscles , Upper Extremity , Movement
4.
Front Neurorobot ; 16: 920118, 2022.
Article in English | MEDLINE | ID: mdl-35898562

ABSTRACT

Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease resulting in motor impairments associated with muscle weakness and lack of movement coordination. The goal of this work was to quantify upper limb motor deficits in asymptomatic MS subjects with a robot-based assessment including performance and muscle synergies analysis. A total of 7 subjects (MS: 3 M-4 F; 42 ± 10 years) with clinically definite MS according to McDonald criteria, but with no clinical disability, and 7 age- and sex-matched subjects without a history of neurological disorders participated in the study. All subjects controlled a cursor on the computer screen by moving their hand or applying forces in 8 coplanar directions at their self-selected speed. They grasped the handle of a robotic planar manipulandum that generated four different environments: null, assistive or resistive forces, and rigid constraint. Simultaneously, the activity of 15 upper body muscles was recorded. Asymptomatic MS subjects generated less smooth and less accurate cursor trajectories than control subjects in controlling a force profile, while the end-point error was significantly different also in the other environments. The EMG analysis revealed different muscle activation patterns in MS subjects when exerting isometric forces or when moving in presence of external forces generated by a robot. While the two populations had the same number and similar structure of muscle synergies, they had different activation profiles. These results suggested that a task requiring to control forces against a rigid environment allows better than movement tasks to detect early sensory-motor signs related to the onset of symptoms of multiple sclerosis and to differentiate between stages of the disease.

5.
Sensors (Basel) ; 21(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33807007

ABSTRACT

BACKGROUND: The recovery of upper limb mobility and functions is essential for people with cervical spinal cord injuries (cSCI) to maximize independence in daily activities and ensure a successful return to normality. The rehabilitative path should include a thorough neuromotor evaluation and personalized treatments aimed at recovering motor functions. Body-machine interfaces (BoMI) have been proven to be capable of harnessing residual joint motions to control objects like computer cursors and virtual or physical wheelchairs and to promote motor recovery. However, their therapeutic application has still been limited to shoulder movements. Here, we expanded the use of BoMI to promote the whole arm's mobility, with a special focus on elbow movements. We also developed an instrumented evaluation test and a set of kinematic indicators for assessing residual abilities and recovery. METHODS: Five inpatient cSCI subjects (four acute, one chronic) participated in a BoMI treatment complementary to their standard rehabilitative routine. The subjects wore a BoMI with sensors placed on both proximal and distal arm districts and practiced for 5 weeks. The BoMI was programmed to promote symmetry between right and left arms use and the forearms' mobility while playing games. To evaluate the effectiveness of the treatment, the subjects' kinematics were recorded while performing an evaluation test that involved functional bilateral arms movements, before, at the end, and three months after training. RESULTS: At the end of the training, all subjects learned to efficiently use the interface despite being compelled by it to engage their most impaired movements. The subjects completed the training with bilateral symmetry in body recruitment, already present at the end of the familiarization, and they increased the forearm activity. The instrumental evaluation confirmed this. The elbow motion's angular amplitude improved for all subjects, and other kinematic parameters showed a trend towards the normality range. CONCLUSION: The outcomes are preliminary evidence supporting the efficacy of the proposed BoMI as a rehabilitation tool to be considered for clinical practice. It also suggests an instrumental evaluation protocol and a set of indicators to assess and evaluate motor impairment and recovery in cSCI.


Subject(s)
Arm , Spinal Cord Injuries , Biomechanical Phenomena , Humans , Movement , Upper Extremity
6.
Life (Basel) ; 11(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922668

ABSTRACT

This study investigated how stroke's hemispheric localization affects motor performance, spinal maps and muscle synergies while performing planar reaching with and without assistive or resistive forces. A lesion of the right hemisphere affected performance, reducing average speed and smoothness and augmenting lateral deviation in both arms. Instead, a lesion of the left hemisphere affected the aiming error, impairing the feedforward control of the ipsilesional arm. The structure of the muscle synergies had alterations dependent on the lesion side in both arms. The applied force fields reduced the differences in performance and in muscle activations between arms and among populations. These results support the hypotheses of hemispheric specialization in movement control and identify potential significant biomarkers for the design of more effective and personalized rehabilitation protocols.

7.
J Neural Eng ; 17(4): 046004, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32521522

ABSTRACT

OBJECTIVE: Body-Machine Interfaces (BoMIs) establish a way to operate a variety of devices, allowing their users to extend the limits of their motor abilities by exploiting the redundancy of muscles and motions that remain available after spinal cord injury or stroke. Here, we considered the integration of two types of signals, motion signals derived from inertial measurement units (IMUs) and muscle activities recorded with electromyography (EMG), both contributing to the operation of the BoMI. APPROACH: A direct combination of IMU and EMG signals might result in inefficient control due to the differences in their nature. Accordingly, we used a nonlinear-regression-based approach to predict IMU from EMG signals, after which the predicted and actual IMU signals were combined into a hybrid control signal. The goal of this approach was to provide users with the possibility to switch seamlessly between movement and EMG control, using the BoMI as a tool for promoting the engagement of selected muscles. We tested the interface in three control modalities, EMG-only, IMU-only and hybrid, in a cohort of 15 unimpaired participants. Participants practiced reaching movements by guiding a computer cursor over a set of targets. MAIN RESULTS: We found that the proposed hybrid control led to comparable performance to IMU-based control and significantly outperformed the EMG-only control. Results also indicated that hybrid cursor control was predominantly influenced by EMG signals. SIGNIFICANCE: We concluded that combining EMG with IMU signals could be an efficient way to target muscle activations while overcoming the limitations of an EMG-only control.


Subject(s)
Movement , Spinal Cord Injuries , Electromyography , Humans , Motion , Muscles
8.
J Neural Eng ; 17(4): 045002, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32516757

ABSTRACT

OBJECTIVE: Several training programs have been developed in the past to restore motor functions after stroke. Their efficacy strongly relies on the possibility to assess individual levels of impairment and recovery rate. However, commonly used clinical scales rely mainly on subjective functional assessments and are not able to provide a complete description of patients' neuro-biomechanical status. Therefore, current clinical tests should be integrated with specific physiological measurements, i.e. kinematic, muscular, and brain activities, to obtain a deep understanding of patients' condition and of its evolution through time and rehabilitative intervention. APPROACH: We proposed a multivariate approach for motor control assessment that simultaneously measures kinematic, muscle and brain activity and combines the main physiological variables extracted from these signals using principal component analysis (PCA). We tested it in a group of six sub-acute stroke subjects evaluated extensively before and after a four-week training, using an upper-limb exoskeleton while performing a reaching task, along with brain and muscle measurements. MAIN RESULTS: After training, all subjects exhibited clinical improvements correlating with changes in kinematics, muscle synergies, and spinal maps. Movements were smoother and faster, while muscle synergies increased in numbers and became more similar to those of the healthy controls. These findings were coupled with changes in cortical oscillations depicted by EEG-topographies. When combining these physiological variables using PCA, we found that (i) patients' kinematic and spinal maps parameters improved continuously during the four assessments; (ii) muscle coordination augmented mainly during treatment, and (iii) brain oscillations recovered mostly pre-treatment as a consequence of short-term subacute changes. SIGNIFICANCE: Although these are preliminary results, the proposed approach has the potential of identifying significant biomarkers for patient stratification as well as for the design of more effective rehabilitation protocols.


Subject(s)
Stroke Rehabilitation , Stroke , Biomechanical Phenomena , Humans , Movement , Stroke/diagnosis , Stroke/therapy , Upper Extremity
9.
Biomed Eng Online ; 19(1): 33, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32410617

ABSTRACT

BACKGROUND: In the past years, robotic systems have become increasingly popular in upper limb rehabilitation. Nevertheless, clinical studies have so far not been able to confirm superior efficacy of robotic therapy over conventional methods. The personalization of robot-aided therapy according to the patients' individual motor deficits has been suggested as a pivotal step to improve the clinical outcome of such approaches. METHODS: Here, we present a model-based approach to personalize robot-aided rehabilitation therapy within training sessions. The proposed method combines the information from different motor performance measures recorded from the robot to continuously estimate patients' motor improvement for a series of point-to-point reaching movements in different directions. Additionally, it comprises a personalization routine to automatically adapt the rehabilitation training. We engineered our approach using an upper-limb exoskeleton. The implementation was tested with 17 healthy subjects, who underwent a motor-adaptation paradigm, and two subacute stroke patients, exhibiting different degrees of motor impairment, who participated in a pilot test undergoing rehabilitative motor training. RESULTS: The results of the exploratory study with healthy subjects showed that the participants divided into fast and slow adapters. The model was able to correctly estimate distinct motor improvement progressions between the two groups of participants while proposing individual training protocols. For the two pilot patients, an analysis of the selected motor performance measures showed that both patients were able to retain the improvements gained during training when reaching movements were reintroduced at a later stage. These results suggest that the automated training adaptation was appropriately timed and specifically tailored to the abilities of each individual. CONCLUSIONS: The results of our exploratory study demonstrated the feasibility of the proposed model-based approach for the personalization of robot-aided rehabilitation therapy. The pilot test with two subacute stroke patients further supported our approach, while providing encouraging results for the applicability in clinical settings. Trial registration This study is registered in ClinicalTrials.gov (NCT02770300, registered 30 March 2016, https://clinicaltrials.gov/ct2/show/NCT02770300).


Subject(s)
Movement , Precision Medicine/methods , Recovery of Function , Robotics , Biomechanical Phenomena , Feasibility Studies , Humans , Pilot Projects , Stroke Rehabilitation
10.
PLoS Comput Biol ; 15(12): e1007118, 2019 12.
Article in English | MEDLINE | ID: mdl-31860655

ABSTRACT

A medical student learning to perform a laparoscopic procedure or a recently paralyzed user of a powered wheelchair must learn to operate machinery via interfaces that translate their actions into commands for an external device. Since the user's actions are selected from a number of alternatives that would result in the same effect in the control space of the external device, learning to use such interfaces involves dealing with redundancy. Subjects need to learn an externally chosen many-to-one map that transforms their actions into device commands. Mathematically, we describe this type of learning as a deterministic dynamical process, whose state is the evolving forward and inverse internal models of the interface. The forward model predicts the outcomes of actions, while the inverse model generates actions designed to attain desired outcomes. Both the mathematical analysis of the proposed model of learning dynamics and the learning performance observed in a group of subjects demonstrate a first-order exponential convergence of the learning process toward a particular state that depends only on the initial state of the inverse and forward models and on the sequence of targets supplied to the users. Noise is not only present but necessary for the convergence of learning through the minimization of the difference between actual and predicted outcomes.


Subject(s)
Learning/physiology , Motor Skills/physiology , Brain-Computer Interfaces/psychology , Brain-Computer Interfaces/statistics & numerical data , Computational Biology , Humans , Models, Biological , Models, Neurological , Movement , Robotics
11.
Sci Rep ; 7(1): 4779, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28684744

ABSTRACT

Body-machine interfaces (BMIs) decode upper-body motion for operating devices, such as computers and wheelchairs. We developed a low-cost portable BMI for survivors of cervical spinal cord injury and investigated it as a means to support personalized assistance and therapy within the home environment. Depending on the specific impairment of each participant, we modified the interface gains to restore a higher level of upper body mobility. The use of the BMI over one month led to increased range of motion and force at the shoulders in chronic survivors. Concurrently, subjects learned to reorganize their body motions as they practiced the control of a computer cursor to perform different tasks and games. The BMI allowed subjects to generate any movement of the cursor with different motions of their body. Through practice subjects demonstrated a tendency to increase the similarity between the body motions used to control the cursor in distinct tasks. Nevertheless, by the end of learning, some significant and persistent differences appeared to persist. This suggests the ability of the central nervous system to concurrently learn operating the BMI while exploiting the possibility to adapt the available mobility to the specific spatio-temporal requirements of each task.


Subject(s)
Learning/physiology , Paralysis/rehabilitation , User-Computer Interface , Adult , Aged , Female , Humans , Male , Middle Aged , Motor Skills/physiology , Movement/physiology , Psychomotor Performance , Range of Motion, Articular/physiology , Shoulder , Spinal Cord Injuries/rehabilitation
12.
Neurorehabil Neural Repair ; 31(5): 487-493, 2017 May.
Article in English | MEDLINE | ID: mdl-28413945

ABSTRACT

This study tested the use of a customized body-machine interface (BoMI) for enhancing functional capabilities in persons with cervical spinal cord injury (cSCI). The interface allows people with cSCI to operate external devices by reorganizing their residual movements. This was a proof-of-concept phase 0 interventional nonrandomized clinical trial. Eight cSCI participants wore a custom-made garment with motion sensors placed on the shoulders. Signals derived from the sensors controlled a computer cursor. A standard algorithm extracted the combinations of sensor signals that best captured each participant's capacity for controlling a computer cursor. Participants practiced with the BoMI for 24 sessions over 12 weeks performing 3 tasks: reaching, typing, and game playing. Learning and performance were evaluated by the evolution of movement time, errors, smoothness, and performance metrics specific to each task. Through practice, participants were able to reduce the movement time and the distance from the target at the 1-second mark in the reaching task. They also made straighter and smoother movements while reaching to different targets. All participants became faster in the typing task and more skilled in game playing, as the pong hit rate increased significantly with practice. The results provide proof-of-concept for the customized BoMI as a means for people with absent or severely impaired hand movements to control assistive devices that otherwise would be manually operated.


Subject(s)
Motor Skills/physiology , Movement/physiology , Self-Help Devices , Spinal Cord Injuries/rehabilitation , User-Computer Interface , Adult , Algorithms , Cervical Cord , Female , Humans , Male , Middle Aged , Range of Motion, Articular , Video Games
13.
IEEE Trans Neural Syst Rehabil Eng ; 25(7): 893-905, 2017 07.
Article in English | MEDLINE | ID: mdl-28092564

ABSTRACT

In this study, we consider a non-invasive body-machine interface that captures body motions still available to people with spinal cord injury (SCI) and maps them into a set of signals for controlling a computer user interface while engaging in a sustained level of mobility and exercise. We compare the effectiveness of two decoding algorithms that transform a high-dimensional body-signal vector into a lower dimensional control vector on six subjects with high-level SCI and eight controls. One algorithm is based on a static map from current body signals to the current value of the control vector set through principal component analysis (PCA), the other on dynamic mapping a segment of body signals to the value and the temporal derivatives of the control vector set through a Kalman filter. SCI and control participants performed straighter and smoother cursor movements with the Kalman algorithm during center-out reaching, but their movements were faster and more precise when using PCA. All participants were able to use the BMI's continuous, two-dimensional control to type on a virtual keyboard and play pong, and performance with both algorithms was comparable. However, seven of eight control participants preferred PCA as their method of virtual wheelchair control. The unsupervised PCA algorithm was easier to train and seemed sufficient to achieve a higher degree of learnability and perceived ease of use.


Subject(s)
Actigraphy/methods , Algorithms , Man-Machine Systems , Movement , Pattern Recognition, Automated/methods , Signal Processing, Computer-Assisted , Spinal Cord Injuries/physiopathology , Adult , Female , Humans , Male , Middle Aged , Principal Component Analysis , Reproducibility of Results , Sensitivity and Specificity , Unsupervised Machine Learning
14.
Brain Sci ; 6(4)2016 Dec 19.
Article in English | MEDLINE | ID: mdl-27999362

ABSTRACT

The purpose of this study was to identify rehabilitative effects and changes in white matter microstructure in people with high-level spinal cord injury following bilateral upper-extremity motor skill training. Five subjects with high-level (C5-C6) spinal cord injury (SCI) performed five visuo-spatial motor training tasks over 12 sessions (2-3 sessions per week). Subjects controlled a two-dimensional cursor with bilateral simultaneous movements of the shoulders using a non-invasive inertial measurement unit-based body-machine interface. Subjects' upper-body ability was evaluated before the start, in the middle and a day after the completion of training. MR imaging data were acquired before the start and within two days of the completion of training. Subjects learned to use upper-body movements that survived the injury to control the body-machine interface and improved their performance with practice. Motor training increased Manual Muscle Test scores and the isometric force of subjects' shoulders and upper arms. Moreover, motor training increased fractional anisotropy (FA) values in the cingulum of the left hemisphere by 6.02% on average, indicating localized white matter microstructure changes induced by activity-dependent modulation of axon diameter, myelin thickness or axon number. This body-machine interface may serve as a platform to develop a new generation of assistive-rehabilitative devices that promote the use of, and that re-strengthen, the motor and sensory functions that survived the injury.

15.
IEEE Trans Neural Syst Rehabil Eng ; 24(2): 249-60, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26054071

ABSTRACT

Many power wheelchair control interfaces are not sufficient for individuals with severely limited upper limb mobility. The majority of controllers that do not rely on coordinated arm and hand movements provide users a limited vocabulary of commands and often do not take advantage of the user's residual motion. We developed a body-machine interface (BMI) that leverages the flexibility and customizability of redundant control by using high dimensional changes in shoulder kinematics to generate proportional control commands for a power wheelchair. In this study, three individuals with cervical spinal cord injuries were able to control a power wheelchair safely and accurately using only small shoulder movements. With the BMI, participants were able to achieve their desired trajectories and, after five sessions driving, were able to achieve smoothness that was similar to the smoothness with their current joystick. All participants were twice as slow using the BMI however improved with practice. Importantly, users were able to generalize training controlling a computer to driving a power wheelchair, and employed similar strategies when controlling both devices. Overall, this work suggests that the BMI can be an effective wheelchair control interface for individuals with high-level spinal cord injuries who have limited arm and hand control.


Subject(s)
Quadriplegia/rehabilitation , Wheelchairs , Adult , Algorithms , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Practice, Psychological , Shoulder/physiology , Spinal Cord Injuries/rehabilitation
16.
Neuropsychologia ; 79(Pt B): 364-76, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26341935

ABSTRACT

The concept of human motor redundancy attracted much attention since the early studies of motor control, as it highlights the ability of the motor system to generate a great variety of movements to achieve any well-defined goal. The abundance of degrees of freedom in the human body may be a fundamental resource in the learning and remapping problems that are encountered in human-machine interfaces (HMIs) developments. The HMI can act at different levels decoding brain signals or body signals to control an external device. The transformation from neural signals to device commands is the core of research on brain-machine interfaces (BMIs). However, while BMIs bypass completely the final path of the motor system, body-machine interfaces (BoMIs) take advantage of motor skills that are still available to the user and have the potential to enhance these skills through their consistent use. BoMIs empower people with severe motor disabilities with the possibility to control external devices, and they concurrently offer the opportunity to focus on achieving rehabilitative goals. In this study we describe a theoretical paradigm for the use of a BoMI in rehabilitation. The proposed BoMI remaps the user's residual upper body mobility to the two coordinates of a cursor on a computer screen. This mapping is obtained by principal component analysis (PCA). We hypothesize that the BoMI can be specifically programmed to engage the users in functional exercises aimed at partial recovery of motor skills, while simultaneously controlling the cursor and carrying out functional tasks, e.g. playing games. Specifically, PCA allows us to select not only the subspace that is most comfortable for the user to act upon, but also the degrees of freedom and coordination patterns that the user has more difficulty engaging. In this article, we describe a family of map modifications that can be made to change the motor behavior of the user. Depending on the characteristics of the impairment of each high-level spinal cord injury (SCI) survivor, we can make modifications to restore a higher level of symmetric mobility (left versus right), or to increase the strength and range of motion of the upper body that was spared by the injury. Results showed that this approach restored symmetry between left and right side of the body, with an increase of mobility and strength of all the degrees of freedom in the participants involved in the control of the interface. This is a proof of concept that our BoMI may be used concurrently to control assistive devices and reach specific rehabilitative goals. Engaging the users in functional and entertaining tasks while practicing the interface and changing the map in the proposed ways is a novel approach to rehabilitation treatments facilitated by portable and low-cost technologies.


Subject(s)
Learning/physiology , Motor Skills/physiology , Recovery of Function/physiology , Self-Help Devices , Spinal Cord Injuries/rehabilitation , User-Computer Interface , Female , Humans , Male , Middle Aged , Musculoskeletal Physiological Phenomena , Principal Component Analysis , Treatment Outcome , Young Adult
17.
Article in English | MEDLINE | ID: mdl-25569980

ABSTRACT

High-level spinal cord injury (SCI) survivors face every day two related problems: recovering motor skills and regaining functional independence. Body machine interfaces (BoMIs) empower people with sever motor disabilities with the ability to control an external device, but they also offer the opportunity to focus concurrently on achieving rehabilitative goals. In this study we developed a portable, and low-cost BoMI that addresses both problems. The BoMI remaps the user's residual upper body mobility to the two coordinates of a cursor on a computer monitor. By controlling the cursor, the user can perform functional tasks, such as entering text and playing games. This framework also allows the mapping between the body and the cursor space to be modified, gradually challenging the user to exercise more impaired movements. With this approach, we were able to change the behavior of our SCI subject, who initially used almost exclusively his less impaired degrees of freedom - on the left side - for controlling the BoMI. At the end of the few practice sessions he had restored symmetry between left and right side of the body, with an increase of mobility and strength of all the degrees of freedom involved in the control of the interface. This is the first proof of concept that our BoMI can be used to control assistive devices and reach specific rehabilitative goals simultaneously.


Subject(s)
Man-Machine Systems , Motor Skills , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation , User-Computer Interface , Adult , Humans , Male , Movement , Software , Task Performance and Analysis
18.
Article in English | MEDLINE | ID: mdl-25571394

ABSTRACT

Spinal cord injury (SCI) survivors generally retain residual motor and sensory functions, which provide them with the means to control assistive devices. A body-machine interface (BoMI) establishes a mapping from these residual body movements to control commands for an external device. In this study, we designed a BoMI to smooth the way for operating computers, powered wheelchairs and other assistive technologies after cervical spinal cord injuries. The interface design included a comprehensive training paradigm with a range of diverse functional activities to enhance motor learning and retention. Two groups of SCI survivors and healthy control subjects participated in the study. The results indicate the effectiveness of the developed system as an alternative pathway for individuals with motor disabilities to control assistive devices while engaging in functional motor activity.


Subject(s)
Cervical Vertebrae/injuries , Self-Help Devices , Spinal Cord Injuries/rehabilitation , Adult , Case-Control Studies , Disabled Persons , Equipment Design , Female , Humans , Learning , Magnetic Fields , Male , Middle Aged , Motion , Motor Skills , Muscular Atrophy , Software , Wheelchairs
SELECTION OF CITATIONS
SEARCH DETAIL
...