Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Clin Transl Sci ; 17(3): e13742, 2024 03.
Article in English | MEDLINE | ID: mdl-38494922

ABSTRACT

Relapsed/refractory (r/r) acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) outcomes remain poor. A targeted cluster of differentiation (CD)33 × CD3 bispecific antibody, JNJ-67571244, was assessed to identify the maximum tolerated dose (MTD), recommended phase II dose (RP2D), safety and tolerability, and preliminary clinical activity in patients with r/rAML or r/rMDS. This first-in-human, open-label, phase I, dose-escalation/dose-expansion study included patients with r/rAML or r/rMDS who were ineligible for or had exhausted standard therapeutic options. JNJ-67571244 was administered intravenously or subcutaneously using step-up dosing until ≥1 discontinuation condition was met. Outcomes included safety/tolerability, preliminary clinical activity, and systemic pharmacokinetics and pharmacodynamics. The study was terminated after evaluating 10 dose-escalation cohorts (n = 68) and before starting dose-expansion. Overall, 11 (16.2%) patients experienced ≥1 dose-limiting toxicity; all experienced ≥1 treatment-emergent adverse event (TEAE; treatment related: 60 [88.2%]); and 64 (94.1%) experienced ≥1 TEAE of Grade ≥3 toxicity (treatment related: 28 [41.2%]). Although some patients had temporary disease burden reductions, no responses were seen. JNJ-67571244 administration increased multiple cytokines, which coincided with incidence of cytokine release syndrome, infusion-related reactions, and elevated liver function tests. A prolonged step-up strategy was tested to improve tolerability, though this approach did not prevent hepatotoxicity. T-cell activation following treatment suggested target engagement but did not correlate with clinical activity. Safely reaching the projected exposure level for JNJ-67571244 efficacy was not achieved, thus MTD and RP2D were not determined.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Antineoplastic Agents/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy , Sialic Acid Binding Ig-like Lectin 3/immunology
3.
Hematol Transfus Cell Ther ; 45(2): 266-274, 2023.
Article in English | MEDLINE | ID: mdl-36243623

ABSTRACT

INTRODUCTION: Chimeric antigen receptor T (CAR-T) cell therapy is an emerging treatment option for relapsed/refractory multiple myeloma (RRMM) that is a multi-step process involving various stakeholders. Appropriate education on the practical logistics is therefore paramount to ensure treatment success. METHODS: A group of key opinion leaders met to explore the key elements of setting up and running a CAR-T center in Brazil. For each step in the CAR-T cell therapy process, the experts agreed on basic requirements, gave their key recommendations from practical experience, and considered any remaining unanswered questions. RESULTS: This paper presents best-practice recommendations and advice on how to overcome common challenges for each step in the CAR-T cell therapy process, with a focus on the current situation in Brazil. Key themes throughout the process are collaboration within the multidisciplinary team and with the referring physician, along with communication and education for patients and their caregivers. CONCLUSION: We believe that the expert insights presented in this paper, in particular on optimal patient selection and timing of CAR-T cell therapy, will deepen understanding of the CAR-T process and aid implementation of this novel therapy for patients with RRMM in Brazil.

4.
Blood Adv ; 7(1): 167-173, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36240453

ABSTRACT

Clonal evolution in acute myeloid leukemia (AML) originates long before diagnosis and is a dynamic process that may affect survival. However, it remains uninvestigated during routine diagnostic workups. We hypothesized that the mutational status of bone marrow dysplastic cells and leukemic blasts, analyzed at the onset of AML using integrated multidimensional flow cytometry (MFC) immunophenotyping and fluorescence-activated cell sorting (FACS) with next-generation sequencing (NGS), could reconstruct leukemogenesis. Dysplastic cells were detected by MFC in 285 of 348 (82%) newly diagnosed patients with AML. Presence of dysplasia according to MFC and World Health Organization criteria had no prognostic value in older adults. NGS of dysplastic cells and blasts isolated at diagnosis identified 3 evolutionary patterns: stable (n = 12 of 21), branching (n = 4 of 21), and clonal evolution (n = 5 of 21). In patients achieving complete response (CR), integrated MFC and FACS with NGS showed persistent measurable residual disease (MRD) in phenotypically normal cell types, as well as the acquisition of genetic traits associated with treatment resistance. Furthermore, whole-exome sequencing of dysplastic and leukemic cells at diagnosis and of MRD uncovered different clonal involvement in dysplastic myelo-erythropoiesis, leukemic transformation, and chemoresistance. Altogether, we showed that it is possible to reconstruct leukemogenesis in ∼80% of patients with newly diagnosed AML, using techniques other than single-cell multiomics.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Aged , Flow Cytometry/methods , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/complications , Prognosis , High-Throughput Nucleotide Sequencing
5.
Hematol., Transfus. Cell Ther. (Impr.) ; 45(2): 266-274, Apr.-June 2023. tab, ilus
Article in English | LILACS | ID: biblio-1448345

ABSTRACT

ABSTRACT Introduction Chimeric antigen receptor T (CAR-T) cell therapy is an emerging treatment option for relapsed/refractory multiple myeloma (RRMM) that is a multi-step process involving various stakeholders. Appropriate education on the practical logistics is therefore paramount to ensure treatment success. Methods A group of key opinion leaders met to explore the key elements of setting up and running a CAR-T center in Brazil. For each step in the CAR-T cell therapy process, the experts agreed on basic requirements, gave their key recommendations from practical experience, and considered any remaining unanswered questions. Results This paper presents best-practice recommendations and advice on how to overcome common challenges for each step in the CAR-T cell therapy process, with a focus on the current situation in Brazil. Key themes throughout the process are collaboration within the multidisciplinary team and with the referring physician, along with communication and education for patients and their caregivers. Conclusion We believe that the expert insights presented in this paper, in particular on optimal patient selection and timing of CAR-T cell therapy, will deepen understanding of the CAR-T process and aid implementation of this novel therapy for patients with RRMM in Brazil.


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , B-Cell Maturation Antigen , Immunotherapy
6.
Oncotarget ; 9(11): 9714-9727, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29515765

ABSTRACT

The prognostic and predictive value of sequencing analysis in myelodysplastic syndromes (MDS) has not been fully integrated into clinical practice. We performed whole exome sequencing (WES) of bone marrow samples from 83 patients with MDS and 31 with MDS/MPN identifying 218 driver mutations in 31 genes in 98 (86%) patients. A total of 65 (57%) patients received therapy with hypomethylating agents. By univariate analysis, mutations in BCOR, STAG2, TP53 and SF3B1 significantly influenced survival. Increased number of mutations (≥ 3), but not clonal heterogeneity, predicted for shorter survival and LFS. Presence of 3 or more mutations also predicted for lower likelihood of response (26 vs 50%, p = 0.055), and shorter response duration (3.6 vs 26.5 months, p = 0.022). By multivariate analysis, TP53 mutations (HR 3.1, CI 1.3-7.5, p = 0.011) and number of mutations (≥ 3) (HR 2.5, CI 1.3-4.8, p = 0.005) predicted for shorter survival. A novel prognostic model integrating this mutation data with IPSS-R separated patients into three categories with median survival of not reached, 29 months and 12 months respectively (p < 0.001) and increased stratification potential, compared to IPSS-R, in patients with high/very-high IPSS-R. This model was validated in a separate cohort of 413 patients with untreated MDS. Although the use of WES did not provide significant more information than that obtained with targeted sequencing, our findings indicate that increased number of mutations is an independent prognostic factor in MDS and that mutation data can add value to clinical prognostic models.

7.
Leuk Res ; 59: 85-92, 2017 08.
Article in English | MEDLINE | ID: mdl-28599189

ABSTRACT

BACKGROUND: FF-10501-01 is a selective inosine monophosphate dehydrogenase (IMPDH) inhibitor that has shown activity in cancer cell lines. We studied whether FF-10501-01 is effective in targeting a variety of hypomethylating agent (HMA)-sensitive and -resistant acute myelogenous leukemia (AML) cell lines. METHODS: We treated multiple cell lines (including HMA-resistant cells) with FF-10501-01 and analyzed proliferation, apoptosis, and cell cycle status. We also assessed HMA-FF-10501-01 combinations and the ability of extracellular guanosine to rescue cell proliferation in FF-10501-01-treated cells. We performed high-performance liquid chromatography (HPLC) to study guanine nucleotide levels in treated and untreated cells. Finally, we studied the effects of FF-10501-01 in fresh peripheral blood cells taken from AML patients. RESULTS: FF-10501-01 showed a strong dose-dependent effect on proliferation and induced apoptosis at approximately 30µM. The effects of FF-10501-01 treatment on cell cycle status were variable, with no statistically significant trends. Guanosine rescued proliferation in FF-10501-01-treated cells, and HPLC results showed significant decreases in phosphorylated guanosine levels in MOLM13 cells. FF-10501-01 effectively reduced proliferation at concentrations of 300µM and above in 3 primary AML samples. CONCLUSIONS: FF-10501-01 effectively induces AML cell death and reduces AML peripheral blood cell proliferation by targeting guanine nucleotide biosynthesis regardless of HMA resistance status.


Subject(s)
IMP Dehydrogenase/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Guanine/biosynthesis , Guanine/pharmacology , Humans , Leukemia, Myeloid, Acute/pathology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...