Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mol Biol Evol ; 38(12): 5225-5240, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34562092

ABSTRACT

Snakes are known to express a rod visual opsin and two cone opsins, only (SWS1, LWS), a reduced palette resulting from their supposedly fossorial origins. Dipsadid snakes in the genus Helicops are highly visual predators that successfully invaded freshwater habitats from ancestral terrestrial-only habitats. Here, we report the first case of multiple SWS1 visual pigments in a vertebrate, simultaneously expressed in different photoreceptors and conferring both UV and violet sensitivity to Helicops snakes. Molecular analysis and in vitro expression confirmed the presence of two functional SWS1 opsins, likely the result of recent gene duplication. Evolutionary analyses indicate that each sws1 variant has undergone different evolutionary paths with strong purifying selection acting on the UV-sensitive copy and dN/dS ∼1 on the violet-sensitive copy. Site-directed mutagenesis points to the functional role of a single amino acid substitution, Phe86Val, in the large spectral shift between UV and violet opsins. In addition, higher densities of photoreceptors and SWS1 cones in the ventral retina suggest improved acuity in the upper visual field possibly correlated with visually guided behaviors. The expanded visual opsin repertoire and specialized retinal architecture are likely to improve photon uptake in underwater and terrestrial environments, and provide the neural substrate for a gain in chromatic discrimination, potentially conferring unique color vision in the UV-violet range. Our findings highlight the innovative solutions undertaken by a highly specialized lineage to tackle the challenges imposed by the invasion of novel photic environments and the extraordinary diversity of evolutionary trajectories taken by visual opsin-based perception in vertebrates.


Subject(s)
Color Vision , Opsins , Animals , Fresh Water , Opsins/genetics , Opsins/metabolism , Phylogeny , Retinal Cone Photoreceptor Cells/metabolism , Rod Opsins/genetics , Snakes/genetics , Snakes/metabolism
2.
Mol Biol Evol, v. 38, n. 12, p. 5225–5240, set. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3957

ABSTRACT

Snakes are known to express a rod visual opsin and two cone opsins, only (SWS1, LWS), a reduced palette resulting from their supposedly fossorial origins. Dipsadid snakes in the genus Helicops are highly visual predators that successfully invaded freshwater habitats from ancestral terrestrial-only habitats. Here, we report the first case of multiple SWS1 visual pigments in a vertebrate, simultaneously expressed in different photoreceptors and conferring both UV and violet sensitivity to Helicops snakes. Molecular analysis and in vitro expression confirmed the presence of two functional SWS1 opsins, likely the result of recent gene duplication. Evolutionary analyses indicate that each sws1 variant has undergone different evolutionary paths with strong purifying selection acting on the UV-sensitive copy and dN/dS ∼1 on the violet-sensitive copy. Site-directed mutagenesis points to the functional role of a single amino acid substitution, Phe86Val, in the large spectral shift between UV and violet opsins. In addition, higher densities of photoreceptors and SWS1 cones in the ventral retina suggest improved acuity in the upper visual field possibly correlated with visually guided behaviors. The expanded visual opsin repertoire and specialized retinal architecture are likely to improve photon uptake in underwater and terrestrial environments, and provide the neural substrate for a gain in chromatic discrimination, potentially conferring unique color vision in the UV–violet range. Our findings highlight the innovative solutions undertaken by a highly specialized lineage to tackle the challenges imposed by the invasion of novel photic environments and the extraordinary diversity of evolutionary trajectories taken by visual opsin-based perception in vertebrates.

3.
Ecol Evol ; 10(23): 12990-13010, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304511

ABSTRACT

Since all forms of mimicry are based on perceptual deception, the sensory ecology of the intended receiver is of paramount importance to test the necessary precondition for mimicry to occur, that is, model-mimic misidentification, and to gain insight in the origin and evolutionary trajectory of the signals. Here we test the potential for aggressive mimicry by a group of coral reef fishes, the color polymorphic Hypoplectrus hamlets, from the point of view of their most common prey, small epibenthic gobies and mysid shrimp. We build visual models based on the visual pigments and spatial resolution of the prey, the underwater light spectrum and color reflectances of putative models and their hamlet mimics. Our results are consistent with one mimic-model relationship between the butter hamlet H. unicolor and its model the butterflyfish Chaetodon capistratus but do not support a second proposed mimic-model pair between the black hamlet H. nigricans and the dusky damselfish Stegastes adustus. We discuss our results in the context of color morphs divergence in the Hypoplectrus species radiation and suggest that aggressive mimicry in H. unicolor might have originated in the context of protective (Batesian) mimicry by the hamlet from its fish predators rather than aggressive mimicry driven by its prey.

4.
Mol Ecol ; 29(12): 2234-2253, 2020 06.
Article in English | MEDLINE | ID: mdl-32421918

ABSTRACT

Vision represents an excellent model for studying adaptation, given the genotype-to-phenotype map that has been characterized in a number of taxa. Fish possess a diverse range of visual sensitivities and adaptations to underwater light, making them an excellent group to study visual system evolution. In particular, some speciose but understudied lineages can provide a unique opportunity to better understand aspects of visual system evolution such as opsin gene duplication and neofunctionalization. In this study, we showcase the visual system evolution of neotropical Characiformes and the spectral tuning mechanisms they exhibit to modulate their visual sensitivities. Such mechanisms include gene duplications and losses, gene conversion, opsin amino acid sequence and expression variation, and A1 /A2 -chromophore shifts. The Characiforms we studied utilize three cone opsin classes (SWS2, RH2, LWS) and a rod opsin (RH1). However, the characiform's entire opsin gene repertoire is a product of dynamic evolution by opsin gene loss (SWS1, RH2) and duplication (LWS, RH1). The LWS- and RH1-duplicates originated from a teleost specific whole-genome duplication as well as characiform-specific duplication events. Both LWS-opsins exhibit gene conversion and, through substitutions in key tuning sites, one of the LWS-paralogues has acquired spectral sensitivity to green light. These sequence changes suggest reversion and parallel evolution of key tuning sites. Furthermore, characiforms' colour vision is based on the expression of both LWS-paralogues and SWS2. Finally, we found interspecific and intraspecific variation in A1 /A2 -chromophores proportions, correlating with the light environment. These multiple mechanisms may be a result of the diverse visual environments where Characiformes have evolved.


Subject(s)
Characiformes/genetics , Cone Opsins/genetics , Evolution, Molecular , Gene Duplication , Rod Opsins/genetics , Animals , Phylogeny
5.
Proc Biol Sci ; 287(1918): 20192253, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31910785

ABSTRACT

The amount of short wavelength (ultraviolet (UV), violet and blue) light that reaches the retina depends on the transmittance properties of the ocular media, especially the lens, and varies greatly across species in all vertebrate groups studied previously. We measured the lens transmittance in 32 anuran amphibians with different habits, geographical distributions and phylogenetic positions and used them together with eye size and pupil shape to evaluate the relationship with diel activity pattern, elevation and latitude. We found an unusually high lens UV transmittance in the most basal species, and a cut-off range that extends into the visible spectrum for the rest of the sample, with lenses even absorbing violet light in some diurnal species. However, other diurnal frogs had lenses that transmit UV light like the nocturnal species. This unclear pattern in the segregation of ocular media transmittance and diel activity is shared with other vertebrates and is consistent with the absence of significant correlations in our statistical analyses. Although we did not detect a significant phylogenetic effect, closely related species tend to have similar transmittances, irrespective of whether they share the same diel pattern or not, suggesting that anuran ocular media transmittance properties might be related to phylogeny.


Subject(s)
Anura/physiology , Ultraviolet Rays , Vision, Ocular , Animals , Ecology , Phylogeny , Pupil
6.
PLoS One ; 14(6): e0218413, 2019.
Article in English | MEDLINE | ID: mdl-31199853

ABSTRACT

Little is known about long-term changes in coral reef fish communities. Here we present a new technique that leverages fish otoliths in reef sediments to reconstruct coral reef fish communities. We found over 5,400 otoliths in 169 modern and mid-Holocene bulk samples from Caribbean Panama and Dominican Republic mid-Holocene and modern reefs, demonstrating otoliths are abundant in reef sediments. With a specially-built reference collection, we were able to assign over 4,400 otoliths to one of 56 taxa (35 families) though mostly at genus and family level. Many otoliths were from juvenile fishes for which identification is challenging. Richness (by rarefaction) of otolith assemblages was slightly higher in modern than mid-Holocene reefs, but further analyses are required to elucidate the underlying causes. We compared the living fish communities, sampled using icthyocide, with the sediment otolith assemblages on four reefs finding the otolith assemblages faithfully capture the general composition of the living fish communities. Radiocarbon dating performed directly on the otoliths suggests that relatively little mixing of sediment layers particularly on actively accreting branching coral reefs. All otolith assemblages were strongly dominated by small, fast-turnover fish taxa and juvenile individuals, and our exploration on taxonomy, functional ecology and taphonomy lead us to the conclusion that intense predation is likely the most important process for otolith accumulation in reef sediments. We conclude that otolith assemblages in modern and fossil reef sediments can provide a powerful tool to explore ecological changes in reef fish communities over time and space.


Subject(s)
Coral Reefs , Fishes , Fossils , Geologic Sediments/chemistry , Otolithic Membrane/chemistry , Animals , Dominican Republic , Panama
7.
Front Zool ; 16: 17, 2019.
Article in English | MEDLINE | ID: mdl-31198433

ABSTRACT

BACKGROUND: Lizards are excellent models to study the adaptations of the visual system to different scenarios, and surface-dwelling representatives have been relatively well studied. In contrast, very little is known about the functional anatomy of the eyes of fossorial lineages, and properties such as the light transmission by the ocular media have never been characterised in any fossorial species. Some lizards in the family Gymnophthalmidae endemic to the sand dunes of North Eastern Brazil have evolved sand-burrowing habits and nocturnal activity. Lizards in the sister group to Gymnophthalmidae, the family Teiidae, have decidedly diurnal and epigeal lifestyles, yet they are equally poorly known in terms of visual systems. We focussed on the eye anatomy, photoreceptor morphology and light transmittance properties of the ocular media and oil droplets in the gymnophthalmid Calyptommatus nicterus and the teiid Ameivula ocellifera. RESULTS: The general organisation of the eyes of the fossorial nocturnal C. nicterus and the epigeal diurnal A. ocellifera is remarkably similar. The lenses are highly transmissive to light well into the ultraviolet part of the spectrum. The photoreceptors have the typical cone morphology, with narrow short outer segments and oil droplets. The main difference between the two species is that C. nicterus has only colourless oil droplets, whereas A. ocellifera has colourless as well as green-yellow and pale-orange droplets. CONCLUSIONS: Our results challenge the assumption that fossorial lizards undergo loss of visual function, a claim that is usually guided by the reduced size and external morphology of their eyes. In the case of C. nicterus, the visual system is well suited for vision in bright light and shows specialisations that improve sensitivity in dim light, suggesting that they might perform some visually-guided behaviour above the surface at the beginning or the end of their daily activity period, when light levels are relatively high in their open dunes habitat. This work highlights how studies on the functional anatomy of sensory systems can provide insights into the habits of secretive species.

8.
J Exp Biol ; 222(Pt 6)2019 03 18.
Article in English | MEDLINE | ID: mdl-30787138

ABSTRACT

An adaptive visual system is essential for organisms inhabiting new or changing light environments. The Panama Canal exhibits such variable environments owing to its anthropogenic origin and current human activities. Within the Panama Canal, Lake Gatun harbors several exotic fish species including the invasive peacock bass (Cichla monoculus), a predatory Amazonian cichlid. In this research, through spectral measurements and molecular and physiological experiments, we studied the visual system of C. monoculus and its adaptive capabilities. Our results suggest that (1) Lake Gatun is a highly variable environment, where light transmission changes throughout the canal waterway, and that (2) C. monoculus has several visual adaptations suited for this red-shifted light environment. Cichla monoculus filters short wavelengths (∼400 nm) from the environment through its ocular media and tunes its visual sensitivities to the available light through opsin gene expression. More importantly, based on shifts in spectral sensitivities of photoreceptors alone, and on transcriptome analysis, C. monoculus exhibits extreme intraspecific variation in the use of vitamin A1/A2 chromophore in their photoreceptors. Fish living in turbid water had higher proportions of vitamin A2, shifting sensitivities to longer wavelengths, than fish living in clear water. Furthermore, we also found variation in retinal transcriptomes, where fish from turbid and clear waters exhibited differentially expressed genes that vary greatly in their function. We suggest that this phenotypic plasticity has been key in the invasion success of C. monoculus.


Subject(s)
Cichlids/physiology , Light , Vision, Ocular , Visual Perception , Animals , Environment , Introduced Species , Lakes , Opsins/metabolism , Panama
9.
Mol Biol Evol ; 34(10): 2469-2485, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28444297

ABSTRACT

Midas cichlid fish are a Central American species flock containing 13 described species that has been dated to only a few thousand years old, a historical timescale infrequently associated with speciation. Their radiation involved the colonization of several clear water crater lakes from two turbid great lakes. Therefore, Midas cichlids have been subjected to widely varying photic conditions during their radiation. Being a primary signal relay for information from the environment to the organism, the visual system is under continuing selective pressure and a prime organ system for accumulating adaptive changes during speciation, particularly in the case of dramatic shifts in photic conditions. Here, we characterize the full visual system of Midas cichlids at organismal and genetic levels, to determine what types of adaptive changes evolved within the short time span of their radiation. We show that Midas cichlids have a diverse visual system with unexpectedly high intra- and interspecific variation in color vision sensitivity and lens transmittance. Midas cichlid populations in the clear crater lakes have convergently evolved visual sensitivities shifted toward shorter wavelengths compared with the ancestral populations from the turbid great lakes. This divergence in sensitivity is driven by changes in chromophore usage, differential opsin expression, opsin coexpression, and to a lesser degree by opsin coding sequence variation. The visual system of Midas cichlids has the evolutionary capacity to rapidly integrate multiple adaptations to changing light environments. Our data may indicate that, in early stages of divergence, changes in opsin regulation could precede changes in opsin coding sequence evolution.


Subject(s)
Cichlids/genetics , Eye Proteins/genetics , Animals , Biological Evolution , Cichlids/metabolism , Evolution, Molecular , Eye Proteins/metabolism , Gene Expression/genetics , Genetic Speciation , Genetic Variation/genetics , Lakes , Opsins/genetics , Photoreceptor Cells, Vertebrate/physiology , Phylogeny , Sequence Analysis, DNA/methods , Species Specificity
10.
PLoS One ; 10(3): e0120723, 2015.
Article in English | MEDLINE | ID: mdl-25806520

ABSTRACT

Sexual selection drives the evolution of exaggerated male ornaments in many animal species. Female ornamentation is now acknowledged also to be common but is generally less well understood. One example is the recently documented red female throat coloration in some threespine stickleback (Gasterosteus aculeatus) populations. Although female sticklebacks often exhibit a preference for red male throat coloration, the possibility of sexual selection on female coloration has been little studied. Using sequential and simultaneous mate choice trials, we examined male mate preferences for female throat color, as well as pelvic spine color and standard length, using wild-captured threespine sticklebacks from the Little Campbell River, British Columbia. In a multivariate analysis, we found no evidence for a population-level mate preference in males, suggesting the absence of directional sexual selection on these traits arising from male mate choice. Significant variation was detected among males in their preference functions, but this appeared to arise from differences in their mean responsiveness across mating trials and not from variation in the strength (i.e., slope) of their preference, suggesting the absence of individual-level preferences as well. When presented with conspecific intruder males, male response decreased as intruder red throat coloration increased, suggesting that males can discriminate color and other aspects of phenotype in our experiment and that males may use these traits in intrasexual interactions. The results presented here are the first to explicitly address male preference for female throat color in threespine sticklebacks.


Subject(s)
Sexual Behavior, Animal/physiology , Smegmamorpha/physiology , Animals , Biological Evolution , Biological Phenomena/physiology , Color , Female , Male , Marriage , Phenotype , Physiological Phenomena/physiology , Reproduction/physiology
11.
Mol Ecol ; 19(23): 5101-25, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21040047

ABSTRACT

Colour polymorphisms (CP's) continue to be of interest to evolutionary biologists because of their general tractability, importance in studies of selection and potential role in speciation. Since some of the earliest studies of CP, it has been evident that alternative colour morphs often differ in features other than colour. Here we review the rapidly accumulating evidence concerning the genetic mechanisms underlying correlations between CP and other traits in animals. We find that evidence for genetic correlations is now available for taxonomically diverse systems and that physical linkage and regulatory mechanisms including transcription factors, cis-regulatory elements, and hormone systems provide pathways for the ready accumulation or modification of these correlations. Moreover, physical linkage and regulatory mechanisms may both contribute to genetic correlation in some of the best-studied systems. These results raise the possibility that negative frequency-dependent selection and disruptive selection might often be acting on suites of traits and that the cumulative effects of such selection, as well as correlational selection, may be important to CP persistence and evolution. We consider additional evolutionary implications. We recommend continued efforts to elucidate the mechanisms underlying CP-correlated characters and the more frequent application of comparative approaches, looking at related species that vary in character correlations and patterns of selection. We also recommend efforts to elucidate how frequency-dependent selection may act on suites of characters.


Subject(s)
Evolution, Molecular , Pigmentation/genetics , Polymorphism, Genetic , Animals , Genetic Linkage , Genetic Pleiotropy , Hormones/genetics , Plants/genetics , Transcription Factors/genetics
12.
Evolution ; 63(9): 2372-88, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19473391

ABSTRACT

Sexual selection theory largely rests on the assumption that populations contain individual variation in mating preferences and that individuals are consistent in their preferences. However, there are few empirical studies of within-population variation and even fewer have examined individual male mating preferences. Here, we studied a color polymorphic population of the Lake Victoria cichlid fish Neochromis omnicaeruleus, a species in which color morphs are associated with different sex-determining factors. Wild-caught males were tested in three-way choice trials with multiple combinations of different females belonging to the three color morphs. Compositional log-ratio techniques were applied to analyze individual male mating preferences. Large individual variation in consistency, strength, and direction of male mating preferences for female color morphs was found and hierarchical clustering of the compositional data revealed the presence of four distinct preference groups corresponding to the three color morphs in addition to a no-preference class. Consistency of individual male mating preferences was higher in males with strongest preferences. We discuss the implications of these findings for our understanding of the mechanisms underlying polymorphism in mating preferences.


Subject(s)
Choice Behavior , Cichlids , Color , Genetic Variation , Mating Preference, Animal , Pigmentation/genetics , Polymorphism, Genetic , Animals , Cichlids/anatomy & histology , Cichlids/genetics , Cichlids/physiology , Cluster Analysis , Female , Genotype , Male , Phenotype
13.
Philos Trans R Soc Lond B Biol Sci ; 363(1505): 2861-70, 2008 Sep 12.
Article in English | MEDLINE | ID: mdl-18522918

ABSTRACT

Theory suggests that genetic polymorphisms in female mating preferences may cause disruptive selection on male traits, facilitating phenotypic differentiation despite gene flow, as in reinforcement or other models of speciation with gene flow. Very little experimental data have been published to test the assumptions regarding the genetics of mate choice that such theory relies on. We generated a population segregating for female mating preferences and male colour dissociated from other species differences by breeding hybrids between species of the cichlid fish genus Pundamilia. We measured male mating success as a function of male colour. First, we demonstrate that non-hybrid females of both species use male nuptial coloration for choosing mates, but with inversed preferences. Second, we show that variation in female mating preferences in an F2 hybrid population generates a quadratic fitness function for male coloration suggestive of disruptive selection: intermediate males obtained fewer matings than males at either extreme of the colour range. If the genetics of female mate choice in Pundamilia are representative for those in other species of Lake Victoria cichlid fish, it may help explain the origin and maintenance of phenotypic diversity despite some gene flow.


Subject(s)
Cichlids/genetics , Cichlids/physiology , Hybridization, Genetic , Mating Preference, Animal , Animals , Female , Male , Pigments, Biological , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...