Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(23): 29737-29759, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38805212

ABSTRACT

Biomaterial properties have recently been shown to modulate extracellular vesicle (EV) secretion and cargo; however, the effects of substrate composition on EV production remain underexplored. This study investigates the impacts of surface coatings composed of collagen I (COLI), fibronectin (FN), and poly l-lysine (PLL) on EV secretion for applications in therapeutic EV production and to further understanding of how changes in the extracellular matrix microenvironment affect EVs. EV secretion from primary bone marrow-derived mesenchymal stromal cells (BMSCs), primary adipose-derived stem cells (ASCs), HEK293 cells, NIH3T3 cells, and RAW264.7 cells was characterized on the different coatings. Expression of EV biogenesis genes and cellular adhesion genes was also analyzed. COLI coatings significantly decreased EV secretion in RAW264.7 cells, with associated decreases in cell viability and changes in EV biogenesis-related and cell adhesion genes at day 4. FN coatings increased EV secretion in NIH3T3 cells, while PLL coatings increased EV secretion in ASCs. Surface coatings had significant effects on the capacity of EVs derived from RAW264.7 and NIH3T3 cells to impact in vitro macrophage proliferation. Overall, surface coatings had different cell-specific effects on EV secretion and in vitro functional capacity, thus highlighting the potential of substrate coatings to further the development of clinical EV production systems.


Subject(s)
Extracellular Vesicles , Fibronectins , Mesenchymal Stem Cells , Mice , Animals , Humans , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , NIH 3T3 Cells , RAW 264.7 Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Fibronectins/chemistry , Fibronectins/metabolism , Surface Properties , Polylysine/chemistry , Polylysine/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , HEK293 Cells , Cell Proliferation/drug effects , Cell Adhesion/drug effects , Cell Survival/drug effects , Collagen Type I/metabolism , Collagen Type I/chemistry , Collagen Type I/genetics
2.
Life Sci ; 310: 121082, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36252696

ABSTRACT

AIMS: Erectile dysfunction is a common complication within many pathological conditions associated with low testosterone. Testosterone deficiency increases oxidative stress in the penile tissue that contributes to endothelial dysfunction and subsequent erectile dysfunction. Current therapies do not ameliorate oxidative stress so targeting oxidative stress may improve erectile dysfunction. Resveratrol and MitoQ are two prospective drugs that have antioxidant-like properties and may be useful to improve erectile dysfunction induced by androgen deprivation. MATERIALS AND METHODS: We castrated 12-week-old male C57BL/6 mice and performed an eight-week intervention with oral delivery of resveratrol or MitoQ at low and high doses. We assessed vascular reactivity of the corpus cavernosum and internal pudendal arteries (IPA) through dose-dependent responses to vasodilatory, vasocontractile, and neurogenic stimuli in a myograph system. We performed qRT-PCR to measure expression changes of 18 antioxidant genes in the corpus cavernosum. KEY FINDINGS: Castration significantly impaired erectile function via impaired endothelial-dependent and-independent relaxation, and increased constriction of the corpus cavernosum, and induced severe endothelial dysfunction of the IPA. Castration decreased expression of 8 of the antioxidant genes investigated. Resveratrol and MitoQ were ineffective in reversing the effects of androgen deprivation on vascular reactivity, however high-dose resveratrol treatment upregulated several key antioxidant genes, including Cat, Sod1, Gstm1, and Prdx3. SIGNIFICANCE: Our findings suggest that oral resveratrol and MitoQ treatment may provide protection to the corpus cavernosum under androgen deprived conditions by stimulating endogenous antioxidant systems. However, they may need to be paired with vasoactive drugs to reverse erectile dysfunction under androgen deprived conditions.


Subject(s)
Erectile Dysfunction , Prostatic Neoplasms , Animals , Mice , Humans , Male , Erectile Dysfunction/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Resveratrol/pharmacology , Resveratrol/therapeutic use , Androgens/pharmacology , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Mice, Inbred C57BL , Prostatic Neoplasms/pathology , Penis/pathology , Orchiectomy/adverse effects , Disease Models, Animal , Testosterone/pharmacology , Gene Expression
3.
Biomedicines ; 10(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35052748

ABSTRACT

The mechanistic target of rapamycin (mTOR) is a nutrient-sensitive cellular signaling kinase that has been implicated in the excess production of reactive oxygen species (ROS). NADPH oxidase-derived ROS have been implicated in erectile dysfunction pathogenesis. The objective of this study was to determine if mTOR is an activator of NADPH oxidase in the penis and to determine the functional relevance of this pathway in a translationally relevant model of diet-induced erectile dysfunction. Male mice were fed a control diet or a high-fat, high-sucrose Western style diet (WD) for 12 weeks and treated with vehicle or rapamycin for the final 4 weeks of the dietary intervention. Following the intervention, erectile function was assessed by cavernous nerve-stimulated intracavernous pressure measurement, in vivo ROS production was measured in the penis using a microdialysis approach, and relative protein contents from the corpus cavernosum were determined by Western blot. Erectile function was impaired in vehicle treated WD-mice and was preserved in rapamycin treated WD-mice. Penile NADPH oxidase-mediated ROS were elevated in WD-mice and suppressed by rapamycin treatment. Western blot analysis suggests mTOR activation with WD by increased active site phosphorylation of mTOR and p70S6K, and increased expression of NADPH oxidase subunits, all of which were suppressed by rapamycin. These data suggest that mTOR is an upstream mediator of NADPH oxidase in the corpus cavernosum in response to a chronic Western diet, which has an adverse effect on erectile function.

SELECTION OF CITATIONS
SEARCH DETAIL
...