Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 10(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34571784

ABSTRACT

To meet the challenge of feeding almost 10 billion people by 2050, wheat yield has to double by 2050. However, over the past 20 years, yield increase has slowed down and even stagnated in the main producing countries. Following the example of maize, hybrids have been suggested as a solution to overcome yield stagnation in wheat. However, wheat heterosis is still limited and poorly understood. Gaining a better understanding of hybrid vigor holds the key to breed for better varieties. To this aim, we have developed and phenotyped for physiological and agronomic traits an incomplete factorial design consisting of 91 hybrids and their nineteen female and sixteen male parents. Monitoring the plant development with normalized difference vegetation index revealed that 89% of the hybrids including the five higher yielding hybrids had a longer grain filling phase with a delayed senescence that results in larger grain size. This average increase of 7.7% in thousand kernel weight translated to a positive mid-parent heterosis for grain yield for 86% of hybrids. In addition, hybrids displayed a positive grain protein deviation leading to a +4.7% heterosis in protein yield. These results shed light on the physiological bases underlying yield heterosis in wheat, paving new ways to breed for better wheat hybrids.

2.
Theor Appl Genet ; 117(4): 609-20, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18553068

ABSTRACT

Adaptation to the environment and reproduction are dependent on the date of flowering in the season. The objectives of this paper were to evaluate the effect of photoperiod on flowering date of the model species for legume crops, Medicago truncatula and to describe genetic architecture of this trait in multiple mapping populations. The effect of photoperiod (12 and 18 h) was analysed on eight lines. Quantitative variation in three recombinant inbred lines (RILs) populations involving four parental lines was evaluated, and QTL detection was carried out. Flowering occurred earlier in long than in short photoperiods. Modelling the rate of progression to flowering with temperature and photoperiod gave high R2, with line-specific parameters that indicated differential responses of the lines to both photoperiod and temperature. QTL detection showed a QTL on chromosome 7 that was common to all populations and seasons. Taking advantage of the multiple mapping populations, it was condensed into a single QTL with a support interval of only 0.9 cM. In a bioanalysis, six candidate genes were identified in this interval. This design also indicated other genomic regions that were involved in flowering date variation more specifically in one population or one season. The analysis on three different mapping populations detected more QTLs than on a single population, revealed more alleles and gave a more precise position of the QTLs that were common to several populations and/or seasons. Identification of candidate genes was a result of integration of QTL analysis and genomics in M. truncatula.


Subject(s)
Medicago truncatula/growth & development , Medicago truncatula/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Flowers/growth & development , Genes, Plant , Models, Genetic , Photoperiod , Quantitative Trait Loci , Seasons
3.
Theor Appl Genet ; 114(8): 1391-406, 2007 May.
Article in English | MEDLINE | ID: mdl-17375280

ABSTRACT

In many legume crops, especially in forage legumes, aerial morphogenesis defined as growth and development of plant organs, is an essential trait as it determines plant and seed biomass as well as forage quality (protein concentration, dry matter digestibility). Medicago truncatula is a model species for legume crops. A set of 29 accessions of M. truncatula was evaluated for aerial morphogenetic traits. A recombinant inbred lines (RILs) mapping population was used for analysing quantitative variation in aerial morphogenetic traits and QTL detection. Genes described to be involved in aerial morphogenetic traits in other species were mapped to analyse co-location between QTLs and genes. A large variation was found for flowering date, morphology and dynamics of branch elongation among the 29 accessions and within the RILs population. Flowering date was negatively correlated to main stem and branch length. QTLs were detected for all traits, and each QTL explained from 5.2 to 59.2% of the phenotypic variation. A QTL explaining a large part of genetic variation for flowering date and branch growth was found on chromosome 7. The other chromosomes were also involved in the variation detected in several traits. Mapping of candidate genes indicates a co-location between a homologue of Constans gene or a flowering locus T (FT) gene and the QTL of flowering date on chromosome 7. Other candidate genes for several QTLs are described.


Subject(s)
Medicago truncatula/growth & development , Medicago truncatula/genetics , Plant Components, Aerial/growth & development , Plant Components, Aerial/genetics , Quantitative Trait Loci , Quantitative Trait, Heritable , Chromosome Mapping , Chromosomes, Plant/genetics , Flowering Tops/genetics , Flowering Tops/growth & development , Medicago truncatula/anatomy & histology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Stems/genetics , Plant Stems/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...