Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Hematol ; 37(9): 1038-53, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19501129

ABSTRACT

OBJECTIVE: Murine embryonic stem cells can be differentiated into embryoid bodies (EBs), which serve as an in vitro model recapitulating many aspects of embryonic yolk sac hematopoiesis. Differentiation of embryonic stem cells deficient in either Gata-4 or Gata-6 results in EBs with disrupted visceral endoderm (VE). While lack of VE has detrimental effects on hematopoiesis in vivo, it is unclear whether lack of VE affects hematopoiesis in EBs. Therefore, we compared Gata-4 null (G4N) and Gata-6 null (G6N) EBs with wild-type EBs to assess their ability to commit to hematopoietic cells. MATERIALS AND METHODS: EB VE formation was examined using cell-sorting techniques and analysis visceral endoderm gene expression. Hematopoietic progenitor potential of EBs cultured under various conditions was assessed using colony-forming assays. RESULTS: Definitive erythroid, granulocyte-macrophage, and mixed colonies were significantly reduced in G4N and G6N EBs compared to wild-type EBs. Vascular endothelial growth factor (VEGF) expression and secretion were also reduced in both G4N and G6N EBs, consistent with VE serving as a site of VEGF production. Addition of exogenous VEGF(165), to EB cultures completely rescued definitive colony-forming cells in G4N and G6N EBs. This rescue response could be blocked by addition of soluble Flk-1 Fc to EB cultures. Similarly, addition of exogenous Indian hedgehog to EB cultures also recovers the diminishment in definitive hematopoiesis in a reversible manner. CONCLUSION: These results suggest that the absence of VE in G4N and G6N EBs does not prevent emergence of definitive progenitors from EBs. However, the decreased level of VEGF and Indian hedgehog production in VE devoid G4N and G6N EBs attenuates definitive hematopoietic progenitor cell expansion.


Subject(s)
Embryonic Stem Cells/metabolism , GATA4 Transcription Factor , GATA6 Transcription Factor , Hedgehog Proteins/biosynthesis , Hematopoiesis, Extramedullary/physiology , Vascular Endothelial Growth Factor A/biosynthesis , Animals , Cell Differentiation/physiology , Embryonic Stem Cells/cytology , Endoderm/cytology , Endoderm/embryology , Gene Expression Regulation, Developmental/genetics , Hedgehog Proteins/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mice , Mice, Knockout , Vascular Endothelial Growth Factor A/genetics , Yolk Sac/cytology , Yolk Sac/embryology
2.
Anal Chem ; 79(12): 4603-12, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17503767

ABSTRACT

Interlaboratory comparisons involving nine European stable isotope laboratories have shown that the routine methods of cellulose preparation resulted in data that generally agreed within the precision of the isotope ratio mass spectrometry (IRMS) method used: +/-0.2 per thousand for carbon and +/-0.3 per thousand for oxygen. For carbon, the results suggest that holocellulose is enriched up to 0.39 per thousand in 13C relative to the purified alpha-cellulose. The comparisons of IRMS measurements of carbon on cellulose, sugars, and starches showed low deviations from -0.23 to +0.23 per thousand between laboratories. For oxygen, IRMS measurements varied between means from -0.39 to 0.58 per thousand, -0.89 to 0.42 per thousand, and -1.30 to 1.16 per thousand for celluloses, sugars, and starches, respectively. This can be explained by different effects arising from the use of low- or high-temperature pyrolysis and by the variation between laboratories in the procedures used for drying and storage of samples. The results of analyses of nonexchangeable hydrogen are very similar in means with standard deviations between individual methods from +/-2.7 to +/-4.9 per thousand. The use of a one-point calibration (IAEA-CH7) gave significant positive offsets in delta2H values up to 6 per thousand. Detailed analysis of the results allows us to make the following recommendations in order to increase quality and compatibility of the common data bank: (1) removal of a pretreatment with organic solvents, (2) a purification step with 17% sodium hydroxide solution during cellulose preparation procedure, (3) measurements of oxygen isotopes under an argon hood, (4) use of calibration standard materials, which are of similar nature to that of the measured samples, and (5) using a two-point calibration method for reliable result calculation.


Subject(s)
Carbohydrates/analysis , Cellulose/analysis , Isotopes/analysis , Mass Spectrometry/methods , Starch/analysis , Wood , Calibration , Carbon Isotopes/analysis , Cellulose/chemistry , Deuterium/analysis , Organic Chemicals/chemistry , Oxygen Isotopes/analysis , Sodium Hydroxide/chemistry , Solvents/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...