Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Microbiol Spectr ; 12(3): e0295323, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38315029

ABSTRACT

Achromobacter spp. are opportunistic pathogens of environmental origin increasingly isolated in patients with underlying conditions like cystic fibrosis (CF). Despite recent advances, their virulence factors remain incompletely studied, and siderophore production has not yet been investigated in this genus. The aim of this study was to evaluate the production of siderophores in a large collection of Achromobacter spp. and evaluate the variability according to the origin of the strain and species. A total of 163 strains were studied, including 128 clinical strains (CF and non-CF patients) and 35 strains of environmental origin. Siderophores were quantified by the liquid chrome azurol-sulphonate assay. Species were identified by nrdA gene-based phylogeny. Strains were assigned to 20 species, with Achromobacter xylosoxidans being the most represented (51.5% of strains). Siderophore production was observed in 72.4% of the strains, with amounts ranging from 10.1% to 90% siderophore units. A significantly higher prevalence of siderophore-producing strains and greater production of siderophores were observed for clinical strains compared with strains of environmental origin. Highly variable observations were made according to species: A. xylosoxidans presented unique characteristics (one of the highest prevalence of producing strains and highest amounts produced, particularly by CF strains). Siderophores are important factors for bacterial growth commonly produced by members of the Achromobacter genus. The significance of the observations made during this study must be further investigated. Indeed, the differences observed according to species and the origin of strains suggest that siderophores may represent important determinants of the pathophysiology of Achromobacter spp. infections and also contribute to the particular epidemiological success of A. xylosoxidans in human infections. IMPORTANCE: Achromobacter spp. are recognized as emerging opportunistic pathogens in humans with various underlying diseases, including cystic fibrosis (CF). Although their pathophysiological traits are increasingly studied, their virulence factors remain incompletely described. Particularly, siderophores that represent important factors of bacterial growth have not yet been studied in this genus. A population-based study was performed to explore the ability of members of the Achromobacter genus to produce siderophores, both overall and in relevant subgroups (Achromobacter species; strain origin, either clinical-from CF or non-CF patients-or environmental). This study provides original data showing that siderophore production is a common trait of Achromobacter strains, particularly observed among clinical strains. The major species, Achromobacter xylosoxidans, encompassed both one of the highest prevalence of siderophore-producing strains and strains producing the largest amounts of siderophores, particularly observed for CF strains. These observations may represent additional advantages accounting for the epidemiological success of this species.


Subject(s)
Achromobacter denitrificans , Achromobacter , Cystic Fibrosis , Gram-Negative Bacterial Infections , Humans , Achromobacter/genetics , Cystic Fibrosis/microbiology , Prevalence , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Achromobacter denitrificans/genetics , Virulence Factors/genetics , Siderophores
2.
Am J Med ; 137(1): 23-29, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37838238

ABSTRACT

Simultaneous initiation of quadruple therapy with angiotensin receptor-neprilysin inhibitor, beta-adrenergic receptor blocker, mineralocorticoid receptor antagonist, and sodium glucose cotransporter 2 inhibitor aims at prompt improvement and prevention of readmission in patients hospitalized for heart failure with reduced ejection fraction. However, titration of quadruple therapy is time consuming. Lengthy up-titration of quadruple therapy may negate the benefit of early initiation. Quadruple therapy should start with a sodium glucose cotransporter 2 inhibition and a mineralocorticoid antagonist, as both enable safe decongestion and require minimal or no titration. Depending on the level of decongestion and clinical characteristics, patients receive an angiotensin receptor-neprilysin inhibitor or a beta-adrenergic receptor blocker to be titrated after hospital discharge. Outpatient addition of an angiotensin receptor-neprilysin inhibitor to a beta-adrenergic receptor blocker or vice versa completes the quadruple therapy scheme. By focusing on decongestion and matching intervention to patients' profile, the present therapeutic sequence allows rapid implementation of quadruple therapy at fully recommended doses.


Subject(s)
Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Neprilysin/pharmacology , Neprilysin/therapeutic use , Stroke Volume/physiology , Angiotensin Receptor Antagonists/therapeutic use , Heart Failure/drug therapy , Anti-Arrhythmia Agents/therapeutic use , Adrenergic beta-Antagonists , Enzyme Inhibitors/therapeutic use , Receptors, Adrenergic, beta/therapeutic use , Receptors, Angiotensin/therapeutic use , Patient-Centered Care , Mineralocorticoid Receptor Antagonists/therapeutic use
3.
PLoS One ; 18(9): e0290951, 2023.
Article in English | MEDLINE | ID: mdl-37682933

ABSTRACT

For a transparent well with a known volume capacity, changes in fluid level result in predictable changes in magnification of an overhead light source. For a given well size and fluid, the relationship between volume and magnification can be calculated if the fluid's index of refraction is known or in a naive fashion with a calibration procedure. Light source magnification can be measured through a camera and processed using computer vision contour analysis with OpenCV. This principle was applied in the design of a 3D printable sensing device using a raspberry pi zero and a camera.


Subject(s)
Cell Culture Techniques , Refraction, Ocular , Vision Tests , Calibration , Computers
4.
Cancers (Basel) ; 15(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37760502

ABSTRACT

Multiple myeloma (MM) is an incurable malignancy of plasma cells and the second most common hematologic malignancy in the United States. Although antibodies in clinical cancer therapy are generally of the IgG class, antibodies of the IgE class have attractive properties as cancer therapeutics, such as their high affinity for Fc receptors (FcεRs), the low serum levels of endogenous IgE allowing for less competition for FcR occupancy, and the lack of inhibitory FcRs. Importantly, the FcεRs are expressed on immune cells that elicit antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), and/or antigen presentation such as mast cells, eosinophils, macrophages, and dendritic cells. We now report the development of a fully human IgE targeting human CD38 as a potential MM therapy. We targeted CD38 given its high and uniform expression on MM cells. The novel anti-CD38 IgE, expressed in mammalian cells, is properly assembled and secreted, exhibits the correct molecular weight, binds antigen and the high affinity FcεRI, and induces degranulation of FcεRI expressing cells in vitro and also in vivo in transgenic BALB/c mice expressing human FcεRIα. Moreover, the anti-CD38 IgE induces ADCC and ADCP mediated by monocytes/macrophages against human MM cells (MM.1S). Importantly, the anti-CD38 IgE also prolongs survival in a preclinical disseminated xenograft mouse model using SCID-Beige mice and human MM.1S cells when administered with human peripheral blood mononuclear cells (PBMCs) as a source of monocyte effector cells. Our results suggest that anti-CD38 IgE may be effective in humans bearing MM and other malignancies expressing CD38.

5.
6.
Fitoterapia ; 168: 105543, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37182751

ABSTRACT

Chemical investigation of the ethanol extract from the stems and roots of the medicinal plant Lavigeria macrocarpa led to the isolation and structure elucidation of three previously unreported 21-nordammarane-type saponins namely 6α,27-dihydroxy-3,20-dioxo-21-nordammar-24-(Z)-ene 27-O-[α-L-rhamnopyranosyl-(1→2)-ß-D-glucopyranoside] (1), 6α,27-dihydroxy-3-oxo-21-nordammar-24-(Z)-ene 27-O-ß-D-glucopyranoside (2), and 2α,3ß,6α,27-tetrahydroxy-21-nordammar-24-(Z)-ene 27-O-ß-D-glucopyranoside (3) trivially named lavigemacrocarposide A-C, along with eight known secondary metabolites. Acid hydrolysis of lavigemacrocarposide A yielded a new prosapogenin namely 6α,27-dihydroxy-3,20-dioxo-21-nordammar-24-(Z)-ene 27-O-ß-D-glucopyranoside (1a) and the previously unreported artefactual aglycones 1b and 1c. Their structures were elucidated by spectroscopic analyses including mass spectrometry, 1D and 2D NMR as well as chemical evidence. The EtOH extract, some isolated compounds as well as the prosapogenin (1a) and compounds 1b and 1c were evaluated for anti-inflammatory and cytotoxic activity. Icacine (5) exhibited a significant cytotoxicity against both HeLa and MCF-7 cell lines with an IC50 value of 0.78 µg/mL. All the tested compounds showed more that 50% inhibition of NO production, except for 1 and 2.


Subject(s)
Antineoplastic Agents , Magnoliopsida , Saponins , Humans , Molecular Structure , Plant Extracts/pharmacology , Plant Extracts/chemistry , Saponins/pharmacology , Saponins/chemistry , Anti-Inflammatory Agents/pharmacology
7.
Cancers (Basel) ; 15(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36980702

ABSTRACT

Transferrin receptor 1 (TfR1), also known as CD71, is a transmembrane protein involved in the cellular uptake of iron and the regulation of cell growth. This receptor is expressed at low levels on a variety of normal cells, but is upregulated on cells with a high rate of proliferation, including malignant cells and activated immune cells. Infection with the human immunodeficiency virus (HIV) leads to the chronic activation of B cells, resulting in high expression of TfR1, B-cell dysfunction, and ultimately the development of acquired immunodeficiency syndrome-related B-cell non-Hodgkin lymphoma (AIDS-NHL). Importantly, TfR1 expression is correlated with the stage and prognosis of NHL. Thus, it is a meaningful target for antibody-based NHL therapy. We previously developed a mouse/human chimeric IgG3 specific for TfR1 (ch128.1/IgG3) and showed that this antibody exhibits antitumor activity in an in vivo model of AIDS-NHL using NOD-SCID mice challenged intraperitoneally with 2F7 human Burkitt lymphoma (BL) cells that harbor the Epstein-Barr virus (EBV). We have also developed an IgG1 version of ch128.1 that shows significant antitumor activity in SCID-Beige mouse models of disseminated multiple myeloma, another B-cell malignancy. Here, we aim to explore the utility of ch128.1/IgG1 and its humanized version (hu128.1) in mouse models of AIDS-NHL. To accomplish this goal, we used the 2F7 cell line variant 2F7-BR44, which is more aggressive than the parental cell line and forms metastases in the brain of mice after systemic (intravenous) administration. We also used the human BL cell line JB, which in contrast to 2F7, is EBV-negative, allowing us to study both EBV-infected and non-infected NHL tumors. Treatment with ch128.1/IgG1 or hu128.1 of SCID-Beige mice challenged locally (subcutaneously) with 2F7-BR44 or JB cells results in significant antitumor activity against different stages of disease. Treatment of mice challenged systemically (intravenously) with either 2F7-BR44 or JB cells also showed significant antitumor activity, including long-term survival. Taken together, our results suggest that targeting TfR1 with antibodies, such as ch128.1/IgG1 or hu128.1, has potential as an effective therapy for AIDS-NHL.

8.
Sci Rep ; 12(1): 20173, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36418910

ABSTRACT

Organ-on-a-chip systems combine microfluidics, cell biology, and tissue engineering to culture 3D organ-specific in vitro models that recapitulate the biology and physiology of their in vivo counterparts. Here, we have developed a multiplex platform that automates the culture of individual organoids in isolated microenvironments at user-defined media flow rates. Programmable workflows allow the use of multiple reagent reservoirs that may be applied to direct differentiation, study temporal variables, and grow cultures long term. Novel techniques in polydimethylsiloxane (PDMS) chip fabrication are described here that enable features on the upper and lower planes of a single PDMS substrate. RNA sequencing (RNA-seq) analysis of automated cerebral cortex organoid cultures shows benefits in reducing glycolytic and endoplasmic reticulum stress compared to conventional in vitro cell cultures.


Subject(s)
Organoids , Cell Culture Techniques , Cerebral Cortex , Microfluidics
9.
Heliyon ; 8(11): e11596, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36439758

ABSTRACT

Project-based learning (PBL) has long been recognized as an effective way to teach complex biology concepts. However, not all institutions have the resources to facilitate effective project-based coursework for students. We have developed a framework for facilitating PBL using remote-controlled internet-connected microscopes. Through this approach, one lab facility can host an experiment for many students around the world simultaneously. Experiments on this platform can be run on long timescales and with materials that are typically unavailable to high school classrooms. This allows students to perform novel research projects rather than just repeating standard classroom experiments. To investigate the impact of this program, we designed and ran six user studies with students worldwide. All experiments were hosted in Santa Cruz and San Francisco, California, with observations and decisions made remotely by the students using their personal computers and cellphones. In surveys gathered after the experiments, students reported increased excitement for science and a greater desire to pursue a career in STEM. This framework represents a novel, scalable, and effective PBL approach that has the potential to democratize biology and STEM education around the world.

10.
EMBO J ; 41(11): e111210, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35471636

ABSTRACT

Recent work reported the existence of a mammalian cell-autonomous antiviral defence based on RNA interference (RNAi), which relies on the accumulation of virus-derived small interfering RNAs (vsiRNAs) to guide the degradation of complementary viral RNAs. In a new study, Zhang et al (2022) find that, in infected mice, vsiRNAs can enter the bloodstream via their incorporation into extracellular vesicles (EVs) and confer sequence-specific antiviral activity to recipient cells, thus indicating that mammalian antiviral RNAi participates in both cell-autonomous and non-cell-autonomous host defence.


Subject(s)
Antiviral Agents , Viruses , Animals , Mammals/genetics , Mice , RNA Interference , RNA, Double-Stranded , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Viral/genetics
11.
J Immunother ; 45(5): 227-230, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35467582

ABSTRACT

Transferrin receptor 1 (TfR1) is a universal cancer marker and a meaningful target for antibody-based immunotherapy. We previously developed a mouse/human chimeric antibody (ch128.1/IgG1) specific for the human TfR1 and reported that treatment of SCID-Beige mice bearing disseminated human multiple myeloma (MM) cells with ch128.1/IgG1 results in significant antitumor activity in early-stage and late-stage disease. Both bortezomib and lenalidomide are Food and Drug Administration (FDA) approved therapeutics used to treat MM in combination with other agents. Since combining treatments with different mechanisms of action is an effective antitumor strategy and given the relevance of bortezomib and lenalidomide in MM therapy, we decided to explore, for the first time, the combination of bortezomib or lenalidomide treatment with ch128.1/IgG1 within the context of late-stage MM disease. We found that treatment with a single dose of ch128.1/IgG1, or multiple doses of bortezomib or lenalidomide, used as single agents, results in significant antitumor activity in SCID-Beige mice bearing late-stage disseminated human MM.1S tumors. However, this antitumor activity is superior when ch128.1/IgG1 is combined with either bortezomib or lenalidomide, showing significantly longer survival compared with any therapy used alone. These novel results suggest that the combinations of ch128.1/IgG1 and bortezomib or lenalidomide are promising strategies against MM.


Subject(s)
Multiple Myeloma , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bortezomib/pharmacology , Bortezomib/therapeutic use , Communication , Dexamethasone , Humans , Immunoglobulin G , Lenalidomide/therapeutic use , Mice , Mice, SCID , Receptors, Transferrin
12.
J Cardiovasc Pharmacol ; 79(5): 605-619, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34983917

ABSTRACT

ABSTRACT: Analysis of randomized controlled trials (RCTs) is the cornerstone of evidence-based medicine, therapeutic guidelines and ultimately daily practice. However, 2 issues contribute to cloud the analysis of RCTs. Industry-sponsored RCTs aim at capturing as large indications as possible and clinicians rely excessively on P value statistical significance for the evaluation of the findings. To be most valuable to practitioners, analysis of RCTs needs to provide absolute risk reduction, number of patients needed to treat, fragility index along with the estimation of lost to follow-up patients, and outcome postponement (gain in survival time). We analyzed few major cardiovascular RCTs and assessed the robustness of their findings. Our suggested analytic parameters may be further used in future systematic reviews and meta-analyses.


Subject(s)
Evidence-Based Medicine , Humans , Randomized Controlled Trials as Topic
13.
Nat Commun ; 13(1): 558, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35091550

ABSTRACT

Five New World mammarenaviruses (NWMs) cause life-threatening hemorrhagic fever (HF). Cellular entry by these viruses is mediated by human transferrin receptor 1 (hTfR1). Here, we demonstrate that an antibody (ch128.1/IgG1) which binds the apical domain of hTfR1, potently inhibits infection of attenuated and pathogenic NWMs in vitro. Computational docking of the antibody Fab crystal structure onto the known structure of hTfR1 shows an overlapping receptor-binding region shared by the Fab and the viral envelope glycoprotein GP1 subunit that binds hTfR1, and we demonstrate competitive inhibition of NWM GP1 binding by ch128.1/IgG1 as the principal mechanism of action. Importantly, ch128.1/IgG1 protects hTfR1-expressing transgenic mice against lethal NWM challenge. Additionally, the antibody is well-tolerated and only partially reduces ferritin uptake. Our findings provide the basis for the development of a novel, host receptor-targeted antibody therapeutic broadly applicable to the treatment of HF of NWM etiology.


Subject(s)
Antigens, CD/metabolism , Arenaviridae/metabolism , Hemorrhagic Fever, American/metabolism , Receptors, Transferrin/metabolism , Viral Envelope Proteins/metabolism , A549 Cells , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacology , Antigens, CD/immunology , Arenaviridae/drug effects , Arenaviridae/physiology , Chlorocebus aethiops , Hemorrhagic Fever, American/prevention & control , Hemorrhagic Fever, American/virology , Host-Pathogen Interactions/drug effects , Humans , Junin virus/drug effects , Junin virus/physiology , Mice, Inbred C57BL , Mice, Transgenic , Molecular Docking Simulation , Protein Binding/drug effects , Receptors, Transferrin/antagonists & inhibitors , Receptors, Transferrin/immunology , Vero Cells
14.
Article in English | MEDLINE | ID: mdl-37383277

ABSTRACT

The Internet of Things (IoT) provides a simple framework to control online devices easily. IoT is now a commonplace tool used by technology companies but is rarely used in biology experiments. IoT can benefit cloud biology research through alarm notifications, automation, and the real-time monitoring of experiments. We developed an IoT architecture to control biological devices and implemented it in lab experiments. Lab devices for electrophysiology, microscopy, and microfluidics were created from the ground up to be part of a unified IoT architecture. The system allows each device to be monitored and controlled from an online web tool. We present our IoT architecture so other labs can replicate it for their own experiments.

15.
Commun Biol ; 4(1): 1261, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737378

ABSTRACT

Simultaneous longitudinal imaging across multiple conditions and replicates has been crucial for scientific studies aiming to understand biological processes and disease. Yet, imaging systems capable of accomplishing these tasks are economically unattainable for most academic and teaching laboratories around the world. Here, we propose the Picroscope, which is the first low-cost system for simultaneous longitudinal biological imaging made primarily using off-the-shelf and 3D-printed materials. The Picroscope is compatible with standard 24-well cell culture plates and captures 3D z-stack image data. The Picroscope can be controlled remotely, allowing for automatic imaging with minimal intervention from the investigator. Here, we use this system in a range of applications. We gathered longitudinal whole organism image data for frogs, zebrafish, and planaria worms. We also gathered image data inside an incubator to observe 2D monolayers and 3D mammalian tissue culture models. Using this tool, we can measure the behavior of entire organisms or individual cells over long-time periods.


Subject(s)
Imaging, Three-Dimensional/methods , Mammals , Planarians , Xenopus , Zebrafish , Animals , Behavior, Animal , Mammals/physiology , Organoids/physiology , Planarians/anatomy & histology , Planarians/physiology , Xenopus/anatomy & histology , Xenopus/physiology , Zebrafish/anatomy & histology , Zebrafish/physiology
16.
Immunity ; 54(10): 2180-2182, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34644551

ABSTRACT

RNA interference (RNAi) provides antiviral defense in many organisms, including plants, insects, and nematodes. In this issue of Immunity, Fang et al. (2021) utilize designer peptides targeting viral suppressors of RNAi to provide evidence for the relevance of RNAi to antiviral immunity in mammals, also revealing the potential of this approach toward antiviral therapy.


Subject(s)
Antiviral Agents , Animals , Antiviral Agents/therapeutic use , RNA Interference
17.
Mol Cancer Ther ; 20(9): 1592-1602, 2021 09.
Article in English | MEDLINE | ID: mdl-34158342

ABSTRACT

Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with the development of hematopoietic cancers of B-lymphocyte origin, including AIDS-related non-Hodgkin lymphoma (AIDS-NHL). Primary infection of B-cells with EBV results in their polyclonal activation and immortalization. The transferrin receptor 1 (TfR1), also known as CD71, is important for iron uptake and regulation of cellular proliferation. TfR1 is highly expressed in proliferating cells, including activated lymphocytes and malignant cells. We developed a mouse/human chimeric antibody targeting TfR1 (ch128.1/IgG1) that has previously shown significant antitumor activity in immunosuppressed mouse models bearing human malignant B-cells, including multiple myeloma and AIDS-NHL cells. In this article, we examined the effect of targeting TfR1 to inhibit EBV-driven activation and growth of human B-cells in vivo using an immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl /SzJ [NOD/SCID gamma (NSG)] mouse model. Mice were implanted with T-cell-depleted, human peripheral blood mononuclear cells (PBMCs), either without EBV (EBV-), or exposed to EBV in vitro (EBV+), intravenously via the tail vein. Mice implanted with EBV+ cells and treated with an IgG1 control antibody (400 µg/mouse) developed lymphoma-like growths of human B-cell origin that were EBV+, whereas mice implanted with EBV+ cells and treated with ch128.1/IgG1 (400 µg/mouse) showed increased survival and significantly reduced inflammation and B-cell activation. These results indicate that ch128.1/IgG1 is effective at preventing the growth of EBV+ human B-cell tumors in vivo, thus, indicating that there is significant potential for agents targeting TfR1 as therapeutic strategies to prevent the development of EBV-associated B-cell malignancies. SIGNIFICANCE: An anti-TfR1 antibody, ch128.1/IgG1, effectively inhibits the activation, growth, and immortalization of EBV+ human B-cells in vivo, as well as the development of these cells into lymphoma-like tumors in immunodeficient mice.


Subject(s)
Antibodies, Monoclonal/pharmacology , B-Lymphocytes/immunology , Epstein-Barr Virus Infections/complications , Immunoglobulin G/immunology , Lymphoma/drug therapy , Receptors, Transferrin/immunology , T-Lymphocytes/immunology , Animals , Apoptosis , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Proliferation , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation , Lymphoma/pathology , Lymphoma/virology , Mice , Mice, Inbred NOD , Mice, SCID , Tumor Cells, Cultured
18.
Front Immunol ; 12: 607692, 2021.
Article in English | MEDLINE | ID: mdl-33815364

ABSTRACT

The transferrin receptor 1 (TfR1), also known as cluster of differentiation 71 (CD71), is a type II transmembrane glycoprotein that binds transferrin (Tf) and performs a critical role in cellular iron uptake through the interaction with iron-bound Tf. Iron is required for multiple cellular processes and is essential for DNA synthesis and, thus, cellular proliferation. Due to its central role in cancer cell pathology, malignant cells often overexpress TfR1 and this increased expression can be associated with poor prognosis in different types of cancer. The elevated levels of TfR1 expression on malignant cells, together with its extracellular accessibility, ability to internalize, and central role in cancer cell pathology make this receptor an attractive target for antibody-mediated therapy. The TfR1 can be targeted by antibodies for cancer therapy in two distinct ways: (1) indirectly through the use of antibodies conjugated to anti-cancer agents that are internalized by receptor-mediated endocytosis or (2) directly through the use of antibodies that disrupt the function of the receptor and/or induce Fc effector functions, such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), or complement-dependent cytotoxicity (CDC). Although TfR1 has been used extensively as a target for antibody-mediated cancer therapy over the years, interest continues to increase for both targeting the receptor for delivery purposes and for its use as direct anti-cancer agents. This review focuses on the developments in the use of antibodies targeting TfR1 as direct anti-tumor agents.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Receptors, Transferrin/antagonists & inhibitors , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Antigens, CD , Antineoplastic Agents, Immunological/therapeutic use , Biological Transport/drug effects , Biomarkers, Tumor , Cell Line, Tumor , Drug Evaluation, Preclinical , Gene Expression Regulation, Neoplastic , Humans , Iron/metabolism , Molecular Targeted Therapy/adverse effects , Molecular Targeted Therapy/methods , Signal Transduction , Xenograft Model Antitumor Assays
19.
Nat Commun ; 11(1): 5387, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144593

ABSTRACT

The Human Silencing Hub (HUSH) complex is necessary for epigenetic repression of LINE-1 elements. We show that HUSH-depletion in human cell lines and primary fibroblasts leads to induction of interferon-stimulated genes (ISGs) through JAK/STAT signaling. This effect is mainly attributed to MDA5 and RIG-I sensing of double-stranded RNAs (dsRNAs). This coincides with upregulation of primate-conserved LINE-1s, as well as increased expression of full-length hominid-specific LINE-1s that produce bidirectional RNAs, which may form dsRNA. Notably, LTRs nearby ISGs are derepressed likely rendering these genes more responsive to interferon. LINE-1 shRNAs can abrogate the HUSH-dependent response, while overexpression of an engineered LINE-1 construct activates interferon signaling. Finally, we show that the HUSH component, MPP8 is frequently downregulated in diverse cancers and that its depletion leads to DNA damage. These results suggest that LINE-1s may drive physiological or autoinflammatory responses through dsRNA sensing and gene-regulatory roles and are controlled by the HUSH complex.


Subject(s)
Epigenesis, Genetic/physiology , Gene Expression Regulation, Neoplastic , Gene Silencing/physiology , Interferon Type I/metabolism , Long Interspersed Nucleotide Elements/physiology , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , DNA Damage , Down-Regulation , Gene Knockout Techniques , HEK293 Cells , HeLa Cells , Humans , Inflammation , Interferon-Induced Helicase, IFIH1/metabolism , Long Interspersed Nucleotide Elements/genetics , Phosphoproteins/metabolism , RNA, Double-Stranded , Receptors, Immunologic , Sequence Analysis, RNA , Signal Transduction
20.
J Immunother ; 43(2): 48-52, 2020.
Article in English | MEDLINE | ID: mdl-31693515

ABSTRACT

The transferrin receptor 1 (TfR1) is a meaningful target for antibody-based cancer therapy given its overexpression on malignant cells and its central role in cancer pathology. We previously developed a mouse/human chimeric IgG3 targeting human TfR1 (ch128.1), which exhibits significant antitumor activity against multiple myeloma (MM) in xenograft models of SCID-Beige mice bearing disseminated ARH-77 or KMS-11 tumors. This activity is observed in early and late disease stages of disseminated KMS-11 tumors and, in this model, the mechanism of antitumor activity is Fc-mediated, involving macrophages. As human IgG1 is the isotype of choice for therapeutic antibodies targeting malignant cells and has several advantages compared with IgG3, including established manufacturability, we now developed an IgG1 version of ch128.1. A single dose of ch128.1/IgG1 shows significant antitumor activity, not only against early and late stages of disseminated KMS-11 tumors (Asian origin) but also against these stages of disseminated disease following injection of human MM cells MM.1S (African American origin) or its variant that is resistant to dexamethasone MM.1R. Treatment with the Fc mutant version of ch128.1/IgG1 (L234A/L235A/P329S) with impaired effector functions fails to confer protection against MM.1S and MM.1R tumors, indicating a crucial role of the Fc fragment in the antitumor activity, similar to its IgG3 counterpart. In fact, we found that ch128.1/IgG1, but not the mutant, elicits antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated phagocytosis in the presence of murine bone marrow-derived macrophages. Our results suggest that ch128.1/IgG1 is a promising therapeutic against human B-cell malignancies such as MM.


Subject(s)
Immunoglobulin G/immunology , Multiple Myeloma/immunology , Receptors, Transferrin/immunology , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , B-Lymphocytes/immunology , Female , Heterografts/immunology , Humans , Immunoglobulin Fc Fragments/immunology , Macrophages/immunology , Mice , Mice, SCID , Phagocytosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...