Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 835, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982288

ABSTRACT

Significant progress has been made in the field of plant genomics, as demonstrated by the increased use of high-throughput methodologies that enable the characterization of multiple genome-wide molecular phenotypes. These findings have provided valuable insights into plant traits and their underlying genetic mechanisms, particularly in model plant species. Nonetheless, effectively leveraging them to make accurate predictions represents a critical step in crop genomic improvement. We present AgroNT, a foundational large language model trained on genomes from 48 plant species with a predominant focus on crop species. We show that AgroNT can obtain state-of-the-art predictions for regulatory annotations, promoter/terminator strength, tissue-specific gene expression, and prioritize functional variants. We conduct a large-scale in silico saturation mutagenesis analysis on cassava to evaluate the regulatory impact of over 10 million mutations and provide their predicted effects as a resource for variant characterization. Finally, we propose the use of the diverse datasets compiled here as the Plants Genomic Benchmark (PGB), providing a comprehensive benchmark for deep learning-based methods in plant genomic research. The pre-trained AgroNT model is publicly available on HuggingFace at https://huggingface.co/InstaDeepAI/agro-nucleotide-transformer-1b  for future research purposes.


Subject(s)
Genome, Plant , Plants, Edible/genetics , Genomics/methods , Deep Learning , Manihot/genetics
2.
Comput Biol Med ; 155: 106618, 2023 03.
Article in English | MEDLINE | ID: mdl-36774893

ABSTRACT

The ongoing COVID-19 pandemic is leading to the discovery of hundreds of novel SARS-CoV-2 variants daily. While most variants do not impact the course of the pandemic, some variants pose an increased risk when the acquired mutations allow better evasion of antibody neutralisation or increased transmissibility. Early detection of such high-risk variants (HRVs) is paramount for the proper management of the pandemic. However, experimental assays to determine immune evasion and transmissibility characteristics of new variants are resource-intensive and time-consuming, potentially leading to delays in appropriate responses by decision makers. Presented herein is a novel in silico approach combining spike (S) protein structure modelling and large protein transformer language models on S protein sequences to accurately rank SARS-CoV-2 variants for immune escape and fitness potential. Both metrics were experimentally validated using in vitro pseudovirus-based neutralisation test and binding assays and were subsequently combined to explore the changing landscape of the pandemic and to create an automated Early Warning System (EWS) capable of evaluating new variants in minutes and risk-monitoring variant lineages in near real-time. The system accurately pinpoints the putatively dangerous variants by selecting on average less than 0.3% of the novel variants each week. The EWS flagged all 16 variants designated by the World Health Organization (WHO) as variants of interest (VOIs) if applicable or variants of concern (VOCs) otherwise with an average lead time of more than one and a half months ahead of their designation as such.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Benchmarking , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...