Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 24(1): 389, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37828428

ABSTRACT

BACKGROUND: Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community. RESULTS: This work introduces [Formula: see text]-ep, a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. [Formula: see text]-ep employs the monodomain equation to model the heart's electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, [Formula: see text]-ep integrates the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within [Formula: see text]-fiber. As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying [Formula: see text]-ep, along with comprehensive implementation details and instructions for users. [Formula: see text]-ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of [Formula: see text]-ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files. CONCLUSIONS: [Formula: see text]-ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. [Formula: see text]-ep represents a valuable tool for conducting in silico patient-specific simulations.


Subject(s)
Electrophysiologic Techniques, Cardiac , Software , Humans , Computer Simulation , Myocardium , Africa
2.
BMC Bioinformatics ; 24(1): 143, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37046208

ABSTRACT

BACKGROUND: Modeling the whole cardiac function involves the solution of several complex multi-physics and multi-scale models that are highly computationally demanding, which call for simpler yet accurate, high-performance computational tools. Despite the efforts made by several research groups, no software for whole-heart fully-coupled cardiac simulations in the scientific community has reached full maturity yet. RESULTS: In this work we present [Formula: see text]-fiber, an innovative tool for the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, which are the essential building blocks for modeling the electrophysiological, mechanical and electromechanical cardiac function, from single-chamber to whole-heart simulations. [Formula: see text]-fiber is the first publicly released module for cardiac simulations based on [Formula: see text], an open-source, high-performance Finite Element solver for multi-physics, multi-scale and multi-domain problems developed in the framework of the iHEART project, which aims at making in silico experiments easily reproducible and accessible to a wide community of users, including those with a background in medicine or bio-engineering. CONCLUSIONS: The tool presented in this document is intended to provide the scientific community with a computational tool that incorporates general state of the art models and solvers for simulating the cardiac function within a high-performance framework that exposes a user- and developer-friendly interface. This report comes with an extensive technical and mathematical documentation to welcome new users to the core structure of [Formula: see text]-fiber and to provide them with a possible approach to include the generated cardiac fibers into more sophisticated computational pipelines. In the near future, more modules will be successively published either as pre-compiled binaries for x86-64 Linux systems or as open source software.


Subject(s)
Medicine , Software , Myocytes, Cardiac , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...