Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Psychiatry Res ; 337: 115951, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735240

ABSTRACT

Isolation of rodents throughout adolescence is known to induce many behavioral abnormalities which resemble neuropsychiatric disorders. Separately, this paradigm has also been shown to induce long-term metabolic changes consistent with a pre-diabetic state. Here, we investigate changes in central serotonin (5-HT) and glucagon-like peptide 1 (GLP-1) neurobiology that dually accompany behavioral and metabolic outcomes following social isolation stress throughout adolescence. We find that adolescent-isolation mice exhibit elevated blood glucose levels, impaired peripheral insulin signaling, altered pancreatic function, and fattier body composition without changes in bodyweight. These mice further exhibited disruptions in sleep and enhanced nociception. Using bulk and spatial transcriptomic techniques, we observe broad changes in neural 5-HT, GLP-1, and appetitive circuits. We find 5-HT neurons of adolescent-isolation mice to be more excitable, transcribe fewer copies of Glp1r (mRNA; GLP-1 receptor), and demonstrate resistance to the inhibitory effects of the GLP-1R agonist semaglutide on action potential thresholds. Surprisingly, we find that administration of semaglutide, commonly prescribed to treat metabolic syndrome, induced deficits in social interaction in group-housed mice and rescued social deficits in isolated mice. Overall, we find that central 5-HT circuitry may simultaneously influence mental well-being and metabolic health in this model, via interactions with GLP-1 and proopiomelanocortin circuitry.


Subject(s)
Disease Models, Animal , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Serotonin , Social Isolation , Animals , Mice , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Male , Serotonin/metabolism , Mental Disorders/metabolism , Mental Disorders/drug therapy , Mice, Inbred C57BL , Metabolic Diseases/metabolism , Metabolic Diseases/physiopathology , Blood Glucose/metabolism , Blood Glucose/drug effects
2.
Pharmacol Res ; 203: 107171, 2024 May.
Article in English | MEDLINE | ID: mdl-38599469

ABSTRACT

The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.


Subject(s)
Alcohol Drinking , Alzheimer Disease , Serotonin , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/etiology , Serotonin/metabolism , Alcohol Drinking/adverse effects , Animals , Brain/metabolism , Brain/drug effects , Alcoholism/metabolism
3.
bioRxiv ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37398335

ABSTRACT

Social interaction is a core component of motivational behavior that is perturbed across multiple neuropsychiatric disorders, including alcohol use disorder (AUD). Positive social bonds are neuroprotective and enhance recovery from stress, so reduced social interaction in AUD may delay recovery and lead to alcohol relapse. We report that chronic intermittent ethanol (CIE) induces social avoidance in a sex-dependent manner and is associated with hyperactivity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN). While 5-HT DRN neurons are generally thought to enhance social behavior, recent evidence suggests that specific 5-HT pathways can be aversive. Using chemogenetic iDISCO, the nucleus accumbens (NAcc) was identified as one of 5 regions that were activated by 5-HT DRN stimulation. We then employed an array of molecular genetic tools in transgenic mice to show that 5-HT DRN inputs to NAcc dynorphin neurons drive social avoidance in male mice after CIE by activating 5-HT 2C receptors. NAcc dynorphin neurons also inhibit dopamine release during social interaction, reducing the motivational drive to engage with social partners. This study reveals that excessive serotonergic drive after chronic alcohol can promote social aversion by inhibiting accumbal dopamine release. Drugs that boost brain serotonin levels may be contraindicated for individuals with AUD.

4.
Res Sq ; 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37461716

ABSTRACT

Social interaction is a core component of motivational behavior that is perturbed across multiple neuropsychiatric disorders, including alcohol use disorder (AUD). Positive social bonds are neuroprotective and enhance recovery from stress, so reduced social interaction in AUD may delay recovery and lead to alcohol relapse. We report that chronic intermittent ethanol (CIE) induces social avoidance in a sex-dependent manner and is associated with hyperactivity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN). While 5-HTDRN neurons are generally thought to enhance social behavior, recent evidence suggests that specific 5-HT pathways can be aversive. Using chemogenetic iDISCO, the nucleus accumbens (NAcc) was identified as one of 5 regions that were activated by 5-HT DRN stimulation. We then employed an array of molecular genetic tools in transgenic mice to show that 5-HT DRN inputs to NAcc dynorphin neurons drive social avoidance in male mice after CIE by activating 5-HT2C receptors. NAcc dynorphin neurons also inhibit dopamine release during social interaction, reducing the motivational drive to engage with social partners. This study reveals that excessive serotonergic drive after chronic alcohol can promote social aversion by inhibiting accumbal dopamine release. Drugs that boost brain serotonin levels may be contraindicated for individuals with AUD.

5.
Acta Neuropathol Commun ; 11(1): 57, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37009893

ABSTRACT

Alzheimer's disease (AD) poses an ever-increasing public health concern as the population ages, affecting more than 6 million Americans. AD patients present with mood and sleep changes in the prodromal stages that may be partly driven by loss of monoaminergic neurons in the brainstem, but a causal relationship has not been firmly established. This is due in part to a dearth of animal models that recapitulate early AD neuropathology and symptoms. The goal of the present study was to evaluate depressive and anxiety-like behaviors in a mouse model of AD that overexpresses human wild-type tau (htau) prior to the onset of cognitive impairments and assess these behavior changes in relationship to tau pathology, neuroinflammation, and monoaminergic dysregulation in the dorsal raphe nucleus (DRN) and locus coeruleus (LC). We observed depressive-like behaviors at 4 months in both sexes and hyperlocomotion in male htau mice. Deficits in social interaction persisted at 6 months and were accompanied by an increase in anxiety-like behavior in males. The behavioral changes at 4 months coincided with a lower density of serotonergic (5-HT) neurons, downregulation of 5-HT markers, reduced excitability of 5-HT neurons, and hyperphosphorylated tau in the DRN. Inflammatory markers were also upregulated in the DRN along with protein kinases and transglutaminase 2, which may promote tau phosphorylation and aggregation. Loss of 5-HT innervation to the entorhinal cortex and dentate gyrus of the hippocampus was also observed and may have contributed to depressive-like behaviors. There was also reduced expression of noradrenergic markers in the LC along with elevated phospho-tau expression, but this did not translate to a functional change in neuronal excitability. In total, these results suggest that tau pathology in brainstem monoaminergic nuclei and the resulting loss of serotonergic and/or noradrenergic drive may underpin depressive- and anxiety-like behaviors in the early stages of AD.


Subject(s)
Alzheimer Disease , Female , Humans , Mice , Male , Animals , Alzheimer Disease/pathology , tau Proteins/genetics , tau Proteins/metabolism , Serotonin/metabolism , Locus Coeruleus/metabolism , Dorsal Raphe Nucleus/metabolism , Norepinephrine/metabolism , Disease Models, Animal
6.
Behav Neurosci ; 135(3): 343-346, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33630616

ABSTRACT

Previous studies found that inactivation of the central amygdala (CeA) severely impaired acquisition of cerebellum-dependent delay eye-blink conditioning (EBC) in male rats and rabbits. Sex differences in EBC and the effects of stress on EBC have been reported and might be related to sex differences in amygdala modulation of cerebellar learning. The current study examined the effects of CeA inactivation with muscimol on acquisition and retention of EBC in female rats. Like male rats, CeA inactivation in female rats severely impaired EBC acquisition and retention. Comparison of the female data with previously published data from males indicates no substantive sex differences in the effects of CeA inactivation on acquisition or retention of EBC. The results indicate that amygdala modulation of cerebellar learning is not sex-specific. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Subject(s)
Central Amygdaloid Nucleus , Conditioning, Eyelid , Animals , Cerebellum , Female , Male , Muscimol/pharmacology , Rabbits , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...