Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(6): 3150-3159, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38295269

ABSTRACT

The aim of this study was to simultaneously determine T-2 and HT-2 toxins and the α and ß anomers of their glucosides to assess their content in wheat and oat grains harvested in Poland (2020-2022). Of 298 wheat samples, only 14 (5%) contained the sum of the T-2 and HT-2 toxins (average 34.2 µg/kg; 10.6-67.7 µg/kg). In oat (n = 129), these compounds were detected much more frequently (70% of samples) at an average level of 107.5 µg/kg (6.9-949.1 µg/kg). The sum of T-2 and HT-2 glucosides was detectable in 3% of the wheat (average 16.3 µg/kg; 7.1-39.4 µg/kg) and 65% of the oat samples (average 35.1 µg/kg; 4.0-624.1 µg/kg). Following the study, T-2-3-α-glucoside was identified as the only naturally occurring anomer, while both anomers of HT-2-3-glucosides were detected with higher contents and occurrence rates of HT-2-3-ß-glucoside than the α anomer of this compound.


Subject(s)
Fusarium , Mycotoxins , T-2 Toxin/analogs & derivatives , Mycotoxins/analysis , Glucosides , Triticum , Avena , Food Contamination/analysis , Edible Grain/chemistry
2.
Poult Sci ; 102(2): 102413, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36566659

ABSTRACT

Herein, we conducted a comparative study on the embryotoxicity of ochratoxin A (OTA) and its diastereomer 2'R-ochratoxin A (2'R-OTA) under in ovo conditions, as well as assess the in vitro embryotoxicity of these substances together with ochratoxin B and α-ochratoxin, using chicken (Gallus gallus domesticus) embryo cell lines. In ovo tests involved egg incubation of 8 different groups (i.e., control "0"-no puncture or injection (standard incubation); "00"-punctured eggs without injection; "OTA 0.25," "OTA 0.50," "OTA 0.75," "2'R-OTA 0.25," "2'R-OTA 0.50," "2'R-OTA 0.75"-eggs containing OTA or 2'R-OTA at 0.25, 0.50, and 0.75 µg/egg concentration, respectively). The results confirmed OTA's impact on early and late embryo mortality, where chick hatchability decreased with increasing toxin dosage. Both OTA and 2'R-OTA demonstrated embryotoxicity, however, in the case of the highest OTA diastereomer dose, nearly 11% higher chick hatchability was observed compared with the group that received OTA. 2'R-OTA dosage did not reduce parameters chick quality compared to chicks hatched from control group eggs. OTA concentrations were higher than 2'R-OTA detected in chicken organs such as liver and kidney, whereas 2'R-OTA concentrations were higher in blood serum and heart. The presented studies highlighted the differences in the ability to accumulate toxins in certain organs, which, to a certain extent, may affect the potential toxicity on individual organs. Additionally, during in vitro tests, when assessing the cytotoxic effects of OTA and its analogues toward the chicken embryonic cell line in an MTT assay, the cell metabolic activity was inhibited to a comparable extent at 27-times higher concentration of 2'R-OTA than OTA (0.24 µM). Also, comparably lower toxicity was attributed to the remaining OTA derivatives.


Subject(s)
Chickens , Ochratoxins , Chick Embryo , Animals , Ochratoxins/toxicity , Ovum , Cell Line , Fibroblasts
3.
Foods ; 11(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36360078

ABSTRACT

Maize (Zea mays L.) is one of the most susceptible crops to pathogenic fungal infections, and in particular to the Fusarium species. Secondary metabolites of Fusarium spp.-mycotoxins are not only phytotoxic, but also harmful to humans and animals. They can cause acute or chronic diseases with various toxic effects. The European Union member states apply standards and legal regulations on the permissible levels of mycotoxins in food and feed. This review summarises the most recent knowledge on the occurrence of toxic secondary metabolites of Fusarium in maize, taking into account modified forms of mycotoxins, the progress in research related to the health effects of consuming food or feed contaminated with mycotoxins, and also the development of biological methods for limiting and/or eliminating the presence of the same in the food chain and in compound feed.

4.
J Agric Food Chem ; 70(14): 4291-4302, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35362967

ABSTRACT

Fusarium head blight (FHB) caused by pathogenic species of Fusarium fungi is one of the most important diseases of cereal plants and a factor contributing to losses in plant production. The growth of FHB-associated species is often accompanied by biosynthesis of secondary metabolites─mycotoxins, which serve as a virulence factor. The aim of the study was to evaluate the ratios between deoxynivalenol (DON) and nivalenol (NIV) and their derivatives in the ears of six cultivars of winter wheat with varying resistance to FHB, taking into account a range of factors (weather conditions, location, cultivar, and year) after inoculation with Fusarium culmorum, during a 3 year field experiment, 2018-2020. The presence of toxins in the ears was measured within 21 days of inoculation. The toxins were found in the ears as soon as on the third day from the start of the experiment, whereas relative humidity higher than 80% was a decisive factor for FHB incidence. All wheat cultivars showed the ability to biotransform DON and NIV present in the ears to glucosides, that is, deoxynivalenol-3-glucoside (DON-3G) and nivalenol-3-glucoside (NIV-3G). The levels of these metabolites showed significant correlation with the levels of their basic analogues. In most cases, higher levels of DON and NIV in wheat ears and higher levels of their metabolites were observed, but the relative levels of DON-3G/DON and NIV-3G/NIV at relatively high levels of toxins were lower compared to the ear samples with relatively low toxin levels. The presented results are the first studies, which systematically correlate a variety of wheat cultivars with their extent to glucosylate trichothecenes.


Subject(s)
Fusarium , Mycotoxins , Trichothecenes , Fusarium/metabolism , Glucosides/metabolism , Mycotoxins/metabolism , Plant Diseases/microbiology , Trichothecenes/metabolism , Triticum/metabolism
5.
Molecules ; 26(21)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34771132

ABSTRACT

Scientific demonstrations of the beneficial effects of non-psychoactive cannabinoids on the human body have increased the interest in foods containing hemp components. This review systematizes the latest discoveries relating to the characteristics of cannabinoids from Cannabis sativa L. var. sativa, it also presents a characterization of the mentioned plant. In this review, we present data on the opportunities and limitations of cannabinoids in food production. This article systematizes the data on the legal aspects, mainly the limits of Δ9-THC in food, the most popular analytical techniques (LC-MS and GC-MS) applied to assay cannabinoids in finished products, and the available data on the stability of cannabinoids during heating, storage, and access to light and oxygen. This may constitute a major challenge to their common use in food processing, as well as the potential formation of undesirable degradation products. Hemp-containing foods have great potential to become commercially popular among functional foods, provided that our understanding of cannabinoid stability in different food matrices and cannabinoid interactions with particular food ingredients are expanded. There remains a need for more data on the effects of technological processes and storage on cannabinoid degradation.


Subject(s)
Cannabinoids/analysis , Cannabis/chemistry , Functional Food , Chromatography, Gas , Chromatography, Liquid , Humans , Mass Spectrometry
6.
Toxins (Basel) ; 13(11)2021 10 29.
Article in English | MEDLINE | ID: mdl-34822552

ABSTRACT

Mycotoxins are one of the most dangerous food and feed contaminants, hence they have significant influence on human and animal health. This study reviews the information reported over the last few years on the toxic effects of the most relevant and studied Fusarium toxins and their modified forms. Deoxynivalenol (DON) and its metabolites can induce intracellular oxidative stress, resulting in DNA damage. Recent studies have also revealed the capability of DON and its metabolites to disturb the cell cycle and alter amino acid expression. Several studies have attempted to explore the mechanism of action of T-2 and HT-2 toxins in anorexia induction. Among other findings, two neurotransmitters associated with this process have been identified, namely substance P and serotonin (5-hydroxytryptamine). For zearalenone (ZEN) and its metabolites, the literature points out that, in addition to their generally acknowledged estrogenic and oxidative potentials, they can also modify DNA by altering methylation patterns and histone acetylation. The ability of the compounds to induce alterations in the expression of major metabolic genes suggests that these compounds can contribute to the development of numerous metabolic diseases, including type 2 diabetes.


Subject(s)
Fusarium/chemistry , Mycotoxins/toxicity , Animals , Humans , Mycotoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...