Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139230

ABSTRACT

Determining neuroendocrine tumor (NET) primary sites is pivotal for patient care as pancreatic NETs (pNETs) and small bowel NETs (sbNETs) have distinct treatment approaches. The diagnostic power and prioritization of fluorescence in situ hybridization (FISH) assay biomarkers for establishing primary sites has not been thoroughly investigated using machine learning (ML) techniques. We trained ML models on FISH assay metrics from 85 sbNET and 59 pNET samples for primary site prediction. Exploring multiple methods for imputing missing data, the impute-by-median dataset coupled with a support vector machine model achieved the highest classification accuracy of 93.1% on a held-out test set, with the top importance variables originating from the ERBB2 FISH probe. Due to the greater interpretability of decision tree (DT) models, we fit DT models to ten dataset splits, achieving optimal performance with k-nearest neighbor (KNN) imputed data and a transformation to single categorical biomarker probe variables, with a mean accuracy of 81.4%, on held-out test sets. ERBB2 and MET variables ranked as top-performing features in 9 of 10 DT models and the full dataset model. These findings offer probabilistic guidance for FISH testing, emphasizing the prioritization of the ERBB2, SMAD4, and CDKN2A FISH probes in diagnosing NET primary sites.


Subject(s)
Intestinal Neoplasms , Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , In Situ Hybridization, Fluorescence , Intestinal Neoplasms/pathology , Pancreatic Neoplasms/pathology , Machine Learning
2.
PLoS One ; 11(9): e0162248, 2016.
Article in English | MEDLINE | ID: mdl-27589589

ABSTRACT

In animals, mitochondrial DNA (mtDNA) typically occurs as a single circular chromosome with 13 protein-coding genes and 22 tRNA genes. The various species of lice examined previously, however, have shown mitochondrial genome rearrangements with a range of chromosome sizes and numbers. Our research demonstrates that the mitochondrial genomes of two species of chewing lice found on pocket gophers, Geomydoecus aurei and Thomomydoecus minor, are fragmented with the 1,536 base-pair (bp) cytochrome-oxidase subunit I (cox1) gene occurring as the only protein-coding gene on a 1,916-1,964 bp minicircular chromosome in the two species, respectively. The cox1 gene of T. minor begins with an atypical start codon, while that of G. aurei does not. Components of the non-protein coding sequence of G. aurei and T. minor include a tRNA (isoleucine) gene, inverted repeat sequences consistent with origins of replication, and an additional non-coding region that is smaller than the non-coding sequence of other lice with such fragmented mitochondrial genomes. Sequences of cox1 minichromosome clones for each species reveal extensive length and sequence heteroplasmy in both coding and noncoding regions. The highly variable non-gene regions of G. aurei and T. minor have little sequence similarity with one another except for a 19-bp region of phylogenetically conserved sequence with unknown function.


Subject(s)
DNA, Mitochondrial/metabolism , Electron Transport Complex IV/metabolism , Ischnocera/metabolism , Animals , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Genome, Mitochondrial , Ischnocera/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...