Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Type of study
Language
Publication year range
3.
Integr Environ Assess Manag ; 10(2): 279-85, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24265245

ABSTRACT

A realistic understanding of contaminant sources is required to set appropriate control policy. Forensic chemical methods can be powerful tools in source characterization and identification, but they require a multiple-lines-of-evidence approach. Atmospheric receptor models, such as the US Environmental Protection Agency (USEPA)'s chemical mass balance (CMB), are increasingly being used to evaluate sources of pyrogenic polycyclic aromatic hydrocarbons (PAHs) in sediments. This paper describes the assumptions underlying receptor models and discusses challenges in complying with these assumptions in practice. Given the variability within, and the similarity among, pyrogenic PAH source types, model outputs are sensitive to specific inputs, and parsing among some source types may not be possible. Although still useful for identifying potential sources, the technical specialist applying these methods must describe both the results and their inherent uncertainties in a way that is understandable to nontechnical policy makers. The authors present an example case study concerning an investigation of a class of parking-lot sealers as a significant source of PAHs in urban sediment. Principal component analysis is used to evaluate published CMB model inputs and outputs. Targeted analyses of 2 areas where bans have been implemented are included. The results do not support the claim that parking-lot sealers are a significant source of PAHs in urban sediments.


Subject(s)
Environmental Monitoring/methods , Environmental Policy , Environmental Restoration and Remediation , Models, Statistical , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Cities , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
4.
Biochemistry ; 51(18): 3848-60, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22482720

ABSTRACT

Several strains of Sphingobium chlorophenolicum have been isolated from soil that was heavily contaminated with pentachlorophenol (PCP), a toxic pesticide introduced in the 1930s. S. chlorophenolicum appears to have assembled a poorly functioning pathway for degradation of PCP by patching enzymes recruited via two independent horizontal gene transfer events into an existing metabolic pathway. Flux through the pathway is limited by PCP hydroxylase. PCP hydroxylase is a dimeric protein that belongs to the family of flavin-dependent phenol hydroxylases. In the presence of NADPH, PCP hydroxylase converts PCP to tetrachlorobenzoquinone (TCBQ). The k(cat) for PCP (0.024 s(-1)) is very low, suggesting that the enzyme is not well evolved for turnover of this substrate. Structure-activity studies reveal that substrate binding and activity are enhanced by a low pK(a) for the phenolic proton, increased hydrophobicity, and the presence of a substituent ortho to the hydroxyl group of the phenol. PCP hydroxylase exhibits substantial uncoupling; the C4a-hydroxyflavin intermediate, instead of hydroxylating the substrate, can decompose to produce H(2)O(2) in a futile cycle that consumes NADPH. The extent of uncoupling varies from 0 to 100% with different substrates. The extent of uncoupling is increased by the presence of bulky substituents at position 3, 4, or 5 and decreased by the presence of a chlorine in the ortho position. The effectiveness of PCP hydroxylase is additionally hindered by its promiscuous activity with tetrachlorohydroquinone (TCHQ), a downstream metabolite in the degradation pathway. The conversion of TCHQ to TCBQ reverses flux through the pathway. Substantial uncoupling also occurs during the reaction with TCHQ.


Subject(s)
Mixed Function Oxygenases/metabolism , Pentachlorophenol/metabolism , Biodegradation, Environmental , Catalysis , Hydrogen Peroxide/metabolism , Metabolic Networks and Pathways , Pesticides/metabolism , Sphingomonadaceae/enzymology , Structure-Activity Relationship , Substrate Specificity
6.
Environ Sci Technol ; 37(19): 4410-6, 2003 Oct 01.
Article in English | MEDLINE | ID: mdl-14572093

ABSTRACT

Site evaluation for bioremediation of chlorinated ethenes may need treatability studies to assess the reductive dechlorination potential of vinyl chloride (VC). Dehalogenation of vinyl bromide (VB) was investigated as a surrogate measurement for the dechlorination potential of VC. VB dehalogenation rates and kinetics were studied and compared with those of VC by a methanogenic reductive dechlorinating enrichment culture that was dominated by Dehalococcoides species and by microcosms from two chloroethene-contaminated sites. The enrichment culture dehalogenated VB to ethene at higher rates than VC at similar concentrations. VB was dehalogenated with a higher enzyme affinity than was VC, as indicated by their half-velocity constants, 240 +/- 150 and 21 +/- 8 microM, for VC and VB, respectively. Cross-inhibition study exhibited some evidence for competitive inhibition between VC and VB, suggesting that their degradation might be catalyzed by the same enzyme in the culture. Laboratory microcosm studies using subsurface soil and groundwater from two contaminated sites demonstrated that the production of the reductive dehalogenation product (ethene) could be detected faster with VB as a substrate than with VC. As a result, a substantially shorter (up to 5-10 times) incubation time would be required to detect the same level of reductive dehalogenation activity using VB as a surrogate for VC in treatability assessments.


Subject(s)
Environmental Monitoring/methods , Vinyl Chloride/analysis , Vinyl Chloride/metabolism , Vinyl Compounds/analysis , Water Purification/methods , Bacteria/enzymology , Biodegradation, Environmental , Carcinogens , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL