Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nano Lett ; 15(2): 1122-7, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25625509

ABSTRACT

Optimizing new generations of two-dimensional devices based on van der Waals materials will require techniques capable of measuring variations in electronic properties in situ and with nanometer spatial resolution. We perform scanning microwave microscopy (SMM) imaging of single layers of MoS2 and n- and p-doped WSe2. By controlling the sample charge carrier concentration through the applied tip bias, we are able to reversibly control and optimize the SMM contrast to image variations in electronic structure and the localized effects of surface contaminants. By further performing tip bias-dependent point spectroscopy together with finite element simulations, we distinguish the effects of the quantum capacitance and determine the local dominant charge carrier species and dopant concentration. These results underscore the capability of SMM for the study of 2D materials to image, identify, and study electronic defects.

2.
J Am Chem Soc ; 135(1): 223-31, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23198831

ABSTRACT

Crystalline p-type WSe(2) has been grown by a chemical vapor transport method. After deposition of noble metal catalysts, p-WSe(2) photocathodes exhibited thermodynamically based photoelectrode energy-conversion efficiencies of >7% for the hydrogen evolution reaction under mildly acidic conditions, and were stable under cathodic conditions for at least 2 h in acidic as well as in alkaline electrolytes. The open circuit potentials of the photoelectrodes in contact with the H(+)/H(2) redox couple were very close to the bulk recombination/diffusion limit predicted from the Shockley diode equation. Only crystals with a prevalence of surface step edges exhibited a shift in flat-band potential as the pH was varied. Spectral response data indicated effective minority-carrier diffusion lengths of ∼1 µm, which limited the attainable photocurrent densities in the samples to ∼15 mA cm(-2) under 100 mW cm(-2) of Air Mass 1.5G illumination.

SELECTION OF CITATIONS
SEARCH DETAIL
...