Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
AJNR Am J Neuroradiol ; 39(5): 956-962, 2018 05.
Article in English | MEDLINE | ID: mdl-29567656

ABSTRACT

BACKGROUND AND PURPOSE: Infants born preterm are commonly diagnosed with structural brain lesions known to affect long-term neurodevelopment negatively. Yet, the effects of preterm birth on brain development in the absence of intracranial lesions remain to be studied in detail. In this study, we aim to quantify long term consequences of preterm birth on brain development in this specific group. MATERIALS AND METHODS: Neonatal cranial sonography and follow-up T1-weighted MR imaging and DTI were performed to evaluate whether the anatomic characteristics of the cerebrum and cerebellum in a cohort of school-aged children (6-12 years of age) were related to gestational age at birth in children free of brain lesions in the perinatal period. RESULTS: In the cohort consisting of 36 preterm (28-37 weeks' gestational age) and 66 term-born infants, T1-weighted MR imaging and DTI at 6-12 years revealed a reduction of cerebellar white matter volume (ß = 0.387, P < .001), altered fractional anisotropy of cerebellar white matter (ß = -0.236, P = .02), and a reduction of cerebellar gray and white matter surface area (ß = 0.337, P < .001; ß = 0.375, P < .001, respectively) in relation to birth age. Such relations were not observed for the cerebral cortex or white matter volume, surface area, or diffusion quantities. CONCLUSIONS: The results of our study show that perinatal influences that are not primarily neurologic are still able to disturb long-term neurodevelopment, particularly of the developing cerebellum. Including the cerebellum in future neuroprotective strategies seems therefore essential.


Subject(s)
Cerebellum/growth & development , Cerebellum/pathology , Infant, Premature/growth & development , Cerebellum/diagnostic imaging , Child , Cohort Studies , Diffusion Tensor Imaging , Female , Gestational Age , Humans , Male
2.
AJNR Am J Neuroradiol ; 35(6): 1219-25, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24407271

ABSTRACT

BACKGROUND AND PURPOSE: Neonatal DTI enables quantitative assessment of microstructural brain properties. Although its use is increasing, it is not widely known that vast differences in tractography results can occur, depending on the diffusion tensor estimation methodology used. Current clinical work appears to be insufficiently focused on data quality and processing of neonatal DTI. To raise awareness about this important processing step, we investigated tractography reconstructions of the fornix with the use of several estimation techniques. We hypothesized that the method of tensor estimation significantly affects DTI tractography results. MATERIALS AND METHODS: Twenty-eight DTI scans of infants born <29 weeks of gestation, acquired at 30-week postmenstrual age and without intracranial injury observed, were prospectively collected. Four diffusion tensor estimation methods were applied: 1) linear least squares; 2) weighted linear least squares; 3) nonlinear least squares, and 4) robust estimation of tensors by outlier rejection. Quality of DTI data and tractography results were evaluated for each method. RESULTS: With nonlinear least squares and robust estimation of tensors by outlier rejection, significantly lower mean fractional anisotropy values were obtained than with linear least squares and weighted linear least squares. Visualized quality of tract reconstruction was significantly higher by use of robust estimation of tensors by outlier rejection and correlated with quality of DTI data. CONCLUSIONS: Quality assessment and choice of processing methodology have considerable impact on neonatal DTI analysis. Dedicated acquisition, quality assessment, and advanced processing of neonatal DTI data must be ensured before performing clinical analyses, such as associating microstructural brain properties with patient outcome.


Subject(s)
Artifacts , Diffusion Tensor Imaging/methods , Fornix, Brain/cytology , Fornix, Brain/embryology , Image Interpretation, Computer-Assisted/methods , Nerve Fibers, Myelinated/ultrastructure , Algorithms , Female , Humans , Image Enhancement/methods , Infant, Premature , Male , Reproducibility of Results , Sensitivity and Specificity
3.
Front Hum Neurosci ; 8: 1066, 2014.
Article in English | MEDLINE | ID: mdl-25653607

ABSTRACT

Preterm infants are born during a critical period of brain maturation, in which even subtle events can result in substantial behavioral, motor and cognitive deficits, as well as psychiatric diseases. Recent evidence shows that the main source for these devastating disabilities is not necessarily white matter (WM) damage but could also be disruptions of cortical microstructure. Animal studies showed how moderate hypoxic-ischemic conditions did not result in significant neuronal loss in the developing brain, but did cause significantly impaired dendritic growth and synapse formation alongside a disturbed development of neuronal connectivity as measured using diffusion magnetic resonance imaging (dMRI). When using more advanced acquisition settings such as high-angular resolution diffusion imaging (HARDI), more advanced reconstruction methods can be applied to investigate the cortical microstructure with higher levels of detail. Recent advances in dMRI acquisition and analysis have great potential to contribute to a better understanding of neuronal connectivity impairment in preterm birth. We will review the current understanding of abnormal preterm cortical development, novel approaches in dMRI, and the pitfalls in scanning vulnerable preterm infants.

4.
AJNR Am J Neuroradiol ; 34(8): 1496-505, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23518355

ABSTRACT

Diffusion tensor imaging is a valuable measure in clinical settings to assess diagnosis and prognosis of neonatal brain development. However, obtaining reliable images is not straightforward because of the tissue characteristics of the neonatal brain and the high likelihood of motion artifacts. In this review, we present guidelines on how to acquire DTI data of the neonatal brain and recommend high-quality data acquisition and processing as an essential means to obtain accurate and robust parametric maps. Sudden head movements are problematic for DTI in neonates, and these may lead to incorrect values. We describe strategies to minimize the corrupting effects both in terms of acquisition (eg, more gradient directions) and postprocessing (eg, tensor estimation methods). In addition, tools are described that can help assess whether a dataset is of sufficient quality for further assessment.


Subject(s)
Artifacts , Brain/anatomy & histology , Diffusion Tensor Imaging/methods , Diffusion Tensor Imaging/standards , Image Enhancement/methods , Image Enhancement/standards , Quality Assurance, Health Care/methods , Female , Humans , Infant, Newborn , Male , Netherlands , Practice Guidelines as Topic , Quality Assurance, Health Care/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...