Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Macromolecules ; 52(7): 2778-2788, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30983632

ABSTRACT

Multivalency is an important instrument in the supramolecular chemistry toolkit for the creation of strong specific interactions. In this paper we investigate the multivalency effect in a dendritic host-guest system using molecular dynamics simulations. Specifically, we consider urea-adamantyl decorated poly(propyleneimine) dendrimers that together with compatible mono-, bi-, and tetravalent ureidoacetic acid guests can form dynamic patchy nanoparticles. First, we simulate the self-assembly of these particles into macromolecular nanostructures, showing guest-controlled reduction of dendrimer aggregation. Subsequently, we systematically study guest concentration dependent multivalent binding. At low guest concentrations multivalency of the guests clearly increases relative binding as tethered headgroups bind more often than free guests' headgroups. We find that despite an abundance of binding sites, most of the tethered headgroups bind in close proximity, irrespective of the spacer length; nevertheless, longer spacers do increase binding. At high guest concentrations the dendrimer becomes saturated with bound headgroups, independent of guest valency. However, in direct competition the tetravalent guests prevail over the monovalent ones. This demonstrates the benefit of multivalency at high as well as low concentrations.

2.
J Comput Chem ; 32(11): 2441-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21598279

ABSTRACT

The biosynthesis of the mineralocorticoid hormone aldosterone involves a multistep hydroxylation of 11-deoxycorticosterone at the 11- and 18-positions, resulting in the formation of corticosterone and 18-hydroxycorticosterone, the final precursor of aldosterone. Two members of the cytochrome P450 11B family, CYP11B1 and CYP11B2, are known to catalyze these 11- and 18-hydroxylations, however, only CYP11B2 can oxidize 18-hydroxycorticosterone to aldosterone. It is unknown what sequence of hydroxylations leads to the formation of 18-hydroxycorticosterone. In this study we have investigated which of the possible conversion paths towards formation of 18-hydroxycorticosterone and aldosterone are most likely from the ligand perspective. Therefore, we combined quantum mechanical investigations on the steroid conformations of 11-deoxycorticosterone and its ensuing reaction intermediates with Fukui indices calculations to predict the reactivity of their carbon atoms for an attack by the iron-oxygen species. Both F(-) and F(0) were calculated to account for different mechanisms of substrate conversion. We show which particular initial conformations of 11-deoxycorticosterone and which conversion paths are likely to result in the successful synthesis of aldosterone, and thereby may be representative for the mechanism of aldosterone biosynthesis by CYP11B2. Moreover, we found that the most likely path for aldosterone synthesis coincides with the substrate conformation proposed in an earlier publication. To summarize, we show that on a theoretical and strictly ligand-directed basis only a limited number of reaction paths in the conversion of 11-deoxycorticosterone to aldosterone is possible. Despite its theoretical nature, this knowledge may help to understand the catalytic function of CYP11B1 and CYP11B2.


Subject(s)
Aldosterone/biosynthesis , Aldosterone/chemistry , Cytochrome P-450 CYP11B2/chemistry , Ligands , Quantum Theory , Iron/chemistry , Molecular Structure , Oxygen/chemistry
3.
Nat Mater ; 9(12): 1004-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20972429

ABSTRACT

Bone is a composite material in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals. In the periodic 67 nm cross-striated pattern of the collagen fibril, the less dense 40-nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow. This process is believed to be directed by highly acidic non-collagenous proteins; however, the role of the collagen matrix during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleation.


Subject(s)
Apatites/metabolism , Collagen Type I/metabolism , Durapatite/antagonists & inhibitors , Animals , Bone and Bones/metabolism , Calcium Phosphates/metabolism , Collagen Type I/chemistry , Cryoelectron Microscopy , Cryopreservation , Electron Microscope Tomography , Extracellular Matrix/metabolism , Horses , Light , Models, Molecular , Nanoparticles/chemistry , Osteogenesis , Peptides/metabolism , Scattering, Radiation , Spectrometry, X-Ray Emission , Staining and Labeling/methods , Surface Properties , Tendons/chemistry
4.
J Med Chem ; 53(4): 1712-25, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20121113

ABSTRACT

Reducing aldosterone action is beneficial in various major diseases such as heart failure. Currently, this is achieved with mineralocorticoid receptor antagonists, however, aldosterone synthase (CYP11B2) inhibitors may offer a promising alternative. In this study, we used three-dimensional modeling of CYP11B2 to model the binding modes of the natural substrate 18-hydroxycorticosterone and the recently published CYP11B2 inhibitor R-fadrozole as a rational guide to design 44 structurally simple and achiral 1-benzyl-1H-imidazoles. Their syntheses, in vitro inhibitor potencies, and in silico docking are described. Some promising CYP11B2 inhibitors were identified, with our novel lead MOERAS115 (4-((5-phenyl-1H-imidazol-1-yl)methyl)benzonitrile) displaying an IC(50) for CYP11B2 of 1.7 nM, and a CYP11B2 (versus CYP11B1) selectivity of 16.5, comparable to R-fadrozole (IC(50) for CYP11B2 6.0 nM, selectivity 19.8). Molecular docking of the inhibitors in the models enabled us to generate posthoc hypotheses on their binding modes, providing a valuable basis for future studies and further design of CYP11B2 inhibitors.


Subject(s)
Benzyl Compounds/chemical synthesis , Cytochrome P-450 CYP11B2/antagonists & inhibitors , Imidazoles/chemical synthesis , Models, Molecular , 18-Hydroxycorticosterone/chemistry , Animals , Benzyl Compounds/chemistry , Benzyl Compounds/pharmacology , Catalytic Domain , Cell Line , Cricetinae , Cricetulus , Cytochrome P-450 CYP11B2/chemistry , Fadrozole/chemistry , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Molecular Dynamics Simulation , Protein Binding , Stereoisomerism , Structure-Activity Relationship
5.
Endocrinology ; 149(1): 28-31, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17884944

ABSTRACT

Reversal of cardiac fibrosis is a major determinant of the salutary effects of mineralocorticoid receptor antagonists in heart failure. Recently, R-fadrozole was coined as an aldosterone biosynthesis inhibitor, offering an appealing alternative to mineralocorticoid receptor antagonists to block aldosterone action. The present study aimed to evaluate the effects of R- and S-fadrozole on plasma aldosterone and urinary aldosterone excretion rate and to compare their effectiveness vs. the mineralocorticoid receptor antagonist potassium canrenoate to reverse established cardiac fibrosis. Male lean spontaneously hypertensive heart failure (SHHF) rats (40 wk) were treated for 8 wk by sc infusions of low (0.24 mg/kg.d) or high (1.2 mg/kg.d) doses of R- or S-fadrozole or by potassium canrenoate via drinking water (7.5 mg/kg.d). At the high dose, plasma aldosterone levels were decreased similarly by R- and S-fadrozole, whereas urinary aldosterone excretion rate was reduced only by S-fadrozole. In contrast, whereas at the high dose, R-fadrozole effectively reversed preexistent left ventricular interstitial fibrosis by 50% (vs. 42% for canrenoate), S-fadrozole was devoid of an antifibrotic effect. The low doses of the fadrozole enantiomers did not change cardiac fibrosis or plasma aldosterone but similarly reduced urinary aldosterone excretion rate. In conclusion, R-fadrozole may possess considerable therapeutic merit because of its potent antifibrotic actions in the heart. However, the observed discordance between the aldosterone-lowering and antifibrotic effects of the fadrozole enantiomers raises some doubt about the mechanism by which R-fadrozole diminishes cardiac collagen and about the generality of the concept of lowering aldosterone levels to treat the diseased heart.


Subject(s)
Aldosterone/blood , Fadrozole/chemistry , Fadrozole/therapeutic use , Heart Failure/prevention & control , Heart/drug effects , Myocardium/pathology , Aldosterone/urine , Animals , Canrenoic Acid/pharmacology , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Collagen Type III/genetics , Collagen Type III/metabolism , Drug Evaluation, Preclinical , Fibrosis , Gene Expression Regulation/drug effects , Heart Failure/urine , Male , Mineralocorticoid Receptor Antagonists/pharmacology , Myocardium/metabolism , Rats , Rats, Inbred SHR , Stereoisomerism , Structure-Activity Relationship , Treatment Outcome
6.
J Comput Aided Mol Des ; 21(8): 455-71, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17646925

ABSTRACT

Aldosterone is synthesised by aldosterone synthase (CYP11B2). CYP11B2 has a highly homologous isoform, steroid 11beta-hydroxylase (CYP11B1), which is responsible for the biosynthesis of aldosterone precursors and glucocorticoids. To investigate aldosterone biosynthesis and facilitate the search for selective CYP11B2 inhibitors, we constructed three-dimensional models for CYP11B1 and CYP11B2 for both human and rat. The models were constructed based on the crystal structure of Pseudomonas Putida CYP101 and Oryctolagus Cuniculus CYP2C5. Small steric active site differences between the isoforms were found to be the most important determinants for the regioselective steroid synthesis. A possible explanation for these steric differences for the selective synthesis of aldosterone by CYP11B2 is presented. The activities of the known CYP11B inhibitors metyrapone, R-etomidate, R-fadrazole and S-fadrazole were determined using assays of V79MZ cells that express human CYP11B1 and CYP11B2, respectively. By investigating the inhibitors in the human CYP11B models using molecular docking and molecular dynamics simulations we were able to predict a similar trend in potency for the inhibitors as found in the in vitro assays. Importantly, based on the docking and dynamics simulations it is possible to understand the enantioselectivity of the human enzymes for the inhibitor fadrazole, the R-enantiomer being selective for CYP11B2 and the S-enantiomer being selective for CYP11B1.


Subject(s)
Computer Simulation , Cytochrome P-450 CYP11B2/chemistry , Steroid 11-beta-Hydroxylase/chemistry , Amino Acid Sequence , Animals , Catalytic Domain/genetics , Cytochrome P-450 CYP11B2/antagonists & inhibitors , Cytochrome P-450 CYP11B2/genetics , Cytochrome P-450 CYP11B2/metabolism , Drug Design , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Rats , Sequence Homology, Amino Acid , Steroid 11-beta-Hydroxylase/antagonists & inhibitors , Steroid 11-beta-Hydroxylase/genetics , Steroid 11-beta-Hydroxylase/metabolism , Thermodynamics
7.
Chemistry ; 13(28): 7883-9, 2007.
Article in English | MEDLINE | ID: mdl-17614308

ABSTRACT

The multiple monovalent binding of adamantyl-urea poly(propyleneimine) dendrimers with carboxylic acid-urea guests was investigated using molecular dynamics simulations and X-ray crystallography to better understand the structure and behavior of the dynamic multivalent complex in solution. The results from the two methods are consistent and suggest a preferred molecular picture of this complicated aggregate of multiple components. The guest molecules can bind to the dendrimer in a variety of ways although most involve hydrogen-bonding interactions between urea groups of the dendrimer with urea and/or carboxylic acid groups of the guest. In addition, acid-base interactions between the carboxylic acid of the guest and the tertiary amine in the interior of the dendritic host are present. Our proposed structure gives important information about the predominant dynamic interactions between the host and guest and illustrates how they fit together and interact with each other.


Subject(s)
Aziridines/chemistry , Carboxylic Acids/chemistry , Dendrimers/chemistry , Urea/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Conformation
8.
J Am Chem Soc ; 129(23): 7393-8, 2007 Jun 13.
Article in English | MEDLINE | ID: mdl-17508749

ABSTRACT

Novozym 435-catalyzed ring-opening of a range of omega-methylated lactones demonstrates fascinating differences in rate of reaction and enantioselectivity. A switch from S- to R-selectivity was observed upon going from small (ring sizes or=8). This was attributed to the transition from a cisoid to a transoid conformational preference of the ester bond on going from small to large lactones. The S-selectivity of the ring-opening of the small, cisoid lactones was low to moderate, while the R-selectivity of the ring-opening of the large transoid lactones was surprisingly high. The S-selectivity of the ring-opening of the small, cisoid lactones combined with the established R-selectivity of the transesterification of (aliphatic) secondary alcohols prevented polymerization from taking place. Ring-opening of the large, transoid lactones was R-selective with high enantioselectivity. As a result, these lactones could be polymerized, without exception, by straightforward kinetic resolution polymerization, yielding the enantiopure R-polyester with excellent enantiomeric excess (>99%).


Subject(s)
Lactones/chemistry , Lipase/chemistry , Binding Sites , Catalysis , Computer Simulation , Fungal Proteins/chemistry , Methylation , Models, Molecular , Molecular Conformation , Polymers/chemistry , Stereoisomerism
9.
Chemistry ; 12(23): 6129-37, 2006 Aug 07.
Article in English | MEDLINE | ID: mdl-16795110

ABSTRACT

Poly(ureidophthalimide)s decorated with hydrophilic side chains, that ensure solubility in aqueous media, have been synthesized and characterized by UV/Vis and circular dichroism (CD) spectroscopy. Temperature and concentration dependent CD measurements in water have revealed an almost temperature and concentration independent Cotton effect, indicative for a strong intramolecular organization. Similar studies in THF demonstrate the dynamic nature of the secondary architecture, a characteristic of foldamers. In addition, the bisignated Cotton effect in water is opposite in sign to that in THF, suggestive for a solvent-dependent preference for one helical handedness. Mixing experiments prove the dominance of water in determining the handedness of the helical architecture. The solvent allows for control over the helical architecture and thus governs the supramolecular synthesis.


Subject(s)
Ethylene Oxide/chemistry , Circular Dichroism/methods , Hydrogen Bonding , Models, Molecular , Molecular Structure , Phthalimides/chemical synthesis , Phthalimides/chemistry , Polymers/chemical synthesis , Polymers/chemistry , Solubility , Spectrophotometry, Ultraviolet/methods , Temperature , Water/chemistry
10.
Chemistry ; 9(22): 5597-604, 2003 Nov 21.
Article in English | MEDLINE | ID: mdl-14639642

ABSTRACT

To investigate the potential of di- and tri-azaheterocycles as building blocks for pi-conjugated materials with high electron affinity, linear oligomers incorporating pyrazine and a C(3)-symmetric discotic molecule based on triazine were synthesized. The tridodecyloxyphenyl end-capped ethynylene pyrazinylene oligomers showed remarkable solvatochroism in absorption and emission in solution. The oligomers containing one and two pyrazine rings displayed liquid crystallinity in the solid state. The largest ethynylene pyrazinylene oligomer containing three pyrazine rings had the lowest first reduction potential at -1.08 V. The triazine-derived discotic molecule exhibited UV/Vis and fluorescence behavior comparable to that of the linear oligomers and featured a first reduction potential at -1.49 V, somewhat lower than expected.

SELECTION OF CITATIONS
SEARCH DETAIL
...