Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738885

ABSTRACT

Adeno-associated viral vectors (AAVs) are a remarkable tool for investigating the central nervous system (CNS). Innovative capsids, such as AAV.PHP.eB, demonstrate extensive transduction of the CNS by intravenous injection in mice. To achieve comparable transduction, a 100-fold higher titer (minimally 1 x 1011 genome copies/mouse) is needed compared to direct injection in the CNS parenchyma. In our group, AAV production, including AAV.PHP.eB relies on adherent HEK293T cells and the triple transfection method. Achieving high yields of AAV with adherent cells entails a labor- and material-intensive process. This constraint prompted the development of a protocol for suspension-based cell culture in conical tubes. AAVs generated in adherent cells were compared to the suspension production method. Culture in suspension using transfection reagents Polyethylenimine or TransIt were compared. AAV vectors were purified by iodixanol gradient ultracentrifugation followed by buffer exchange and concentration using a centrifugal filter. With the adherent method, we achieved an average of 2.6 x 1012 genome copies (GC) total, whereas the suspension method and Polyethylenimine yielded 7.7 x 1012 GC in total, and TransIt yielded 2.4 x 1013 GC in total. There is no difference in in vivo transduction efficiency between vectors produced with adherent compared to the suspension cell system. In summary, a suspension HEK293 cell based AAV production protocol is introduced, resulting in a reduced amount of time and labor needed for vector production while achieving 3 to 9 times higher yields using components available from commercial vendors for research purposes.


Subject(s)
Dependovirus , Genetic Vectors , Humans , HEK293 Cells , Genetic Vectors/genetics , Dependovirus/genetics , Transfection/methods , Mice , Animals
2.
Front Bioeng Biotechnol ; 9: 679483, 2021.
Article in English | MEDLINE | ID: mdl-34414171

ABSTRACT

Of the adeno-associated viruses (AAVs), AAV9 is known for its capability to cross the blood-brain barrier (BBB) and can, therefore, be used as a noninvasive method to target the central nervous system. Furthermore, the addition of the peptide PhP.B to AAV9 increases its transduction across the BBB by 40-fold. Another neurotropic serotype, AAV5, has been shown as a gene therapeutic delivery vehicle to ameliorate several neurodegenerative diseases in preclinical models, but its administration requires invasive surgery. In this study, AAV9-PhP.B and AAV5-PhP.B were designed and produced in an insect cell-based system. To AAV9, the PhP.B peptide TLAVPFK was added, whereas in AAV5-PhP.B (AQTLAVPFKAQAQ), with AQ-AQAQ sequences used to swap with the corresponding sequence of AAV5. The addition of PhP.B to AAV5 did not affect its capacity to cross the mouse BBB, while increased transduction of liver tissue was observed. Then, intravenous (IV) and intrastriatal (IStr) delivery of AAV9-PhP.B and AAV5 were compared. For AAV9-PhP.B, similar transduction and expression levels were achieved in the striatum and cortex, irrespective of the delivery method used. IStr administration of AAV5 resulted in significantly higher amounts of vector DNA and therapeutic miRNA in the target regions such as striatum and cortex when compared with an IV administration of AAV9-PhP.B. These results illustrate the challenge in developing a vector that can be delivered noninvasively while achieving a transduction level similar to that of direct administration of AAV5. Thus, for therapeutic miRNA delivery with high local expression requirements, intraparenchymal delivery of AAV5 is preferred, whereas a humanized AAV9-PhP.B may be useful when widespread brain (and peripheral) transduction is needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...