Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Medchemcomm ; 8(5): 1037-1045, 2017 May 01.
Article in English | MEDLINE | ID: mdl-30108817

ABSTRACT

The high similarity between certain sub-pockets of serine proteases may lead to low selectivity of protease inhibitors. Therefore the application of proteochemometrics (PCM), which quantifies the relationship between protein/ligand descriptors and affinity for multiple ligands and targets simultaneously, is useful to understand and improve the selectivity profiles of potential inhibitors. In this study, protein field-based PCM that uses knowledge-based and WaterMap derived fields to describe proteins in combination with 2D (RDKit and MOE fingerprints) and 3D (4 point pharmacophoric fingerprints and GRIND) ligand descriptors was used to model the bioactivities of 24 homologous serine proteases and 5863 inhibitors in an integrated fashion. Of the multiple field-based PCM models generated based on different ligand descriptors, RDKit fingerprints showed the best performance in terms of external prediction with Rtest2 of 0.72 and RMSEP of 0.81. Further, visual interpretation of the models highlights sub-pocket specific regions that influence affinity and selectivity of serine protease inhibitors.

2.
J Chem Inf Model ; 53(11): 3021-30, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24116714

ABSTRACT

Achieving selectivity for small organic molecules toward biological targets is a main focus of drug discovery but has been proven difficult, for example, for kinases because of the high similarity of their ATP binding pockets. To support the design of more selective inhibitors with fewer side effects or with altered target profiles for improved efficacy, we developed a method combining ligand- and receptor-based information. Conventional QSAR models enable one to study the interactions of multiple ligands toward a single protein target, but in order to understand the interactions between multiple ligands and multiple proteins, we have used proteochemometrics, a multivariate statistics method that aims to combine and correlate both ligand and protein descriptions with affinity to receptors. The superimposed binding sites of 50 unique kinases were described by molecular interaction fields derived from knowledge-based potentials and Schrödinger's WaterMap software. Eighty ligands were described by Mold(2), Open Babel, and Volsurf descriptors. Partial least-squares regression including cross-terms, which describe the selectivity, was used for model building. This combination of methods allows interpretation and easy visualization of the models within the context of ligand binding pockets, which can be translated readily into the design of novel inhibitors.


Subject(s)
Adenosine Triphosphate/chemistry , Drug Discovery , Molecular Docking Simulation , Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Binding Sites , Humans , Least-Squares Analysis , Ligands , Multivariate Analysis , Protein Binding , Protein Conformation , Quantitative Structure-Activity Relationship
3.
Biopolymers ; 91(10): 884-94, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19582836

ABSTRACT

A structure-based comparison of the ligand-binding domains of 35 nuclear receptors from five different subfamilies is presented. Their ligand and coactivator binding sites are characterized using knowledge-based contact preference fields for hydrophobic and hydrophilic interactions implemented in the MOE modeling environment. Additionally, for polar knowledge-based field points the preference for negative or positive electrostatic interactions is estimated using the Poisson-Boltzmann equation. These molecular-interaction fields are used to cluster the nuclear receptor family based on similarities of their binding sites. By analyzing the similarities and differences of hydrophobic and polar fields in binding pockets of related receptors it is possible to identify conserved interactions in ligand and coactivator binding pockets, which support e.g. design of specific ligands during lead optimization or virtual screening as docking filter. Examples of remarkable similarities between ligand binding sites of members from phylogenetically different nuclear receptor families (RXR, RAR, HNF4, NR5) and differences between closely related subtypes (LXR, RAR, TR) are discussed in more detail. Significant similarities and differences of coactivator binding sites are shown for NR3Cs, LXRs and PPARs.


Subject(s)
Receptors, Cytoplasmic and Nuclear/chemistry , Animals , Binding Sites , Cluster Analysis , Humans , Ligands , Models, Molecular , Protein Structure, Tertiary , Rats , Receptors, Cytoplasmic and Nuclear/classification , Receptors, Cytoplasmic and Nuclear/genetics , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...