Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35563006

ABSTRACT

The polyamines, spermine (Spm) and spermidine (Spd), are important for cell growth and function. Their homeostasis is strictly controlled, and a key downregulator of the polyamine pool is the polyamine-inducible protein, antizyme 1 (OAZ1). OAZ1 inhibits polyamine uptake and targets ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, for proteasomal degradation. Here we report, for the first time, that polyamines induce dimerization of mouse recombinant full-length OAZ1, forming an (OAZ1)2-Polyamine complex. Dimerization could be modulated by functionally active C-methylated spermidine mimetics (MeSpds) by changing the position of the methyl group along the Spd backbone-2-MeSpd was a poor inducer as opposed to 1-MeSpd, 3-MeSpd, and Spd, which were good inducers. Importantly, the ability of compounds to inhibit polyamine uptake correlated with the efficiency of the (OAZ1)2-Polyamine complex formation. Thus, the (OAZ1)2-Polyamine complex may be needed to inhibit polyamine uptake. The efficiency of polyamine-induced ribosomal +1 frameshifting of OAZ1 mRNA could also be differentially modulated by MeSpds-2-MeSpd was a poor inducer of OAZ1 biosynthesis and hence a poor downregulator of ODC activity unlike the other MeSpds. These findings offer new insight into the OAZ1-mediated regulation of polyamine homeostasis and provide the chemical tools to study it.


Subject(s)
Polyamines , Spermidine , Animals , Dimerization , Frameshifting, Ribosomal , Mice , Ornithine Decarboxylase/metabolism , Polyamines/chemistry , Polyamines/metabolism , Polyamines/pharmacology , Proteins , Spermidine/chemistry , Spermidine/metabolism , Spermidine/pharmacology
2.
Transgenic Res ; 23(1): 153-63, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24174210

ABSTRACT

Polyamines, spermidine, spermine and their precursor putrescine, are ubiquitous cell components essential for normal cell growth. Increased polyamine levels and enhanced biosynthesis have been associated with malignant transformation and tumor formation, and thus, the polyamines have been considered to be a meaningful target to cancer therapies. However, clinical cancer treatment trials using inhibitors of polyamine synthesis have been unsuccessful probably due to compensatory uptake of polyamines from extracellular sources. The antizyme proteins regulate both polyamine biosynthesis and transport, and thus, the antizymes could provide an efficient approach to control cellular proliferation compared to the mere inhibition of biosynthesis. To define the role of antizymes in proliferative processes associated with the whole animal, we have generated transgenic mice overexpressing mouse antizyme 1 gene under its own regulatory sequences. Antizyme 1 protein was abundantly expressed in various organs and the expressed antizyme protein was functional as ornithine decarboxylase activity was significantly reduced in all tissues analyzed. However, antizyme 1 overexpression caused only minor changes in tissue polyamine levels demonstrating the challenges in using the "antizyme approach" to deplete polyamines in a living animal. Neither were there any changes in cellular proliferation in the proliferative tissues of transgenic animals. Interestingly though, there was occurrence of abnormally high level of apoptosis in the non-proliferating part of the colon epithelia. Otherwise, the transgenic founder mice appeared healthy and out of seven founders six were fertile. However, none of the founders could transmit the transgene suggesting that the antizyme 1 overexpression may be deleterious to transgenic gametes.


Subject(s)
Cell Transformation, Neoplastic/genetics , Ornithine Decarboxylase/biosynthesis , Polyamines/metabolism , Proteins/genetics , Animals , Biological Transport/genetics , Gene Expression Regulation , Homeostasis , Mice , Mice, Transgenic , Ornithine Decarboxylase/genetics , Proteins/metabolism , Tissue Distribution
3.
Biochem J ; 453(3): 467-74, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23672317

ABSTRACT

We have shown previously that the polyamine spermidine is indispensable for differentiation of 3T3-L1 preadipocytes. In the present study, we examined the mechanism of spermidine function by using the polyamine biosynthesis inhibitor α-difluoromethylornithine in combination with the metabolically stable polyamine analogues γ-methylspermidine or (R,R)-α,ω-bismethylspermine. At the early phase of differentiation, spermidine-depleted 3T3-L1 cells showed decreased translation of the transcription factor C/EBPß (CCAAT/enhancer-binding protein ß), decreased PP2A (protein phosphatase 2A) activity and increased cytoplasmic localization of the RNA-binding protein HuR (human antigen R). The amount of HuR bound to C/EBPß mRNA was reduced, whereas the amount of bound CUGBP2, an inhibitor of C/EBPß translation, was increased. ANP32 (acidic nuclear phosphoprotein 32) proteins, which are known PP2A inhibitors and HuR ligands, bound more PP2A and HuR in spermidine-depleted than in control cells, whereas immunodepletion of ANP32 proteins from the lysate of spermidine-depleted cells restored PP2A activity. Taken together, our data shows that spermidine promotes C/EBPß translation in differentiating 3T3-L1 cells, and that this process is controlled by the interaction of ANP32 with HuR and PP2A.


Subject(s)
Adipogenesis/drug effects , ELAV Proteins/metabolism , Nuclear Proteins/metabolism , Protein Phosphatase 2/metabolism , Spermidine/pharmacology , 3T3-L1 Cells , Adipogenesis/genetics , Animals , ELAV Proteins/genetics , Eflornithine/pharmacology , Female , Male , Mice , Nuclear Proteins/genetics , Polyamines/chemistry , Polyamines/pharmacology , Protein Phosphatase 2/genetics , Rats , Rats, Wistar
4.
Amino Acids ; 42(2-3): 559-64, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21800259

ABSTRACT

The prostate has the highest level of polyamines among all tissues, and it is the only tissue in which polyamines are purposely synthesized for export. It has been suggested that the high local polyamine concentrations suppress cell growth of primary prostatic carcinomas and that this growth control is lost when cancer cells metastasize. It has also been shown that the sensitivity to polyamine-induced growth arrest correlates with antizyme induction in prostate carcinoma cell lines. In this study, we evaluated the sensitivity of poorly metastatic (LNCaP) and highly metastatic (DU145) prostate cancer cell lines to conditional antizyme 1 over-expression. Antizyme 1 induction resulted in a marked loss of ODC activity and polyamine uptake in both cell lines. However, the proliferation of LNCaP cells was repressed by antizyme 1 induction, whereas the proliferation of DU 145 cells was not affected. Neither cell line showed any reduction in polyamine pools after manipulation nor did polyamine addition into the medium save the LNCaP cells from the growth retardation. The growth inhibition of LNCaP cells was accompanied by accumulation of cells in the G1 phase and depletion of cyclin E1 protein. These results confirm that different prostate cancer cell lines show diverse sensitivities to antizyme 1 which may not be directly polyamine related. The high gene transfer capacity of the used lentiviral vector makes the present approach a useful tool to study the therapeutic potential of antizyme 1 both in cell cultures and experimental animals.


Subject(s)
Gene Transfer Techniques , Lentivirus/genetics , Prostatic Neoplasms/metabolism , Proteins/metabolism , Blotting, Western , Cell Line, Tumor , Cell Proliferation , Humans , Male , Prostatic Neoplasms/pathology , Proteins/genetics
5.
PLoS One ; 6(7): e22564, 2011.
Article in English | MEDLINE | ID: mdl-21818338

ABSTRACT

BACKGROUND: Rapidly regenerating tissues need sufficient polyamine synthesis. Since the hair follicle (HF) is a highly proliferative mini-organ, polyamines may also be important for normal hair growth. However, the role of polyamines in human HF biology and their effect on HF epithelial stem cells in situ remains largely unknown. METHODS AND FINDINGS: We have studied the effects of the prototypic polyamine, spermidine (0.1-1 µM), on human scalp HFs and human HF epithelial stem cells in serum-free organ culture. Under these conditions, spermidine promoted hair shaft elongation and prolonged hair growth (anagen). Spermidine also upregulated expression of the epithelial stem cell-associated keratins K15 and K19, and dose-dependently modulated K15 promoter activity in situ and the colony forming efficiency, proliferation and K15 expression of isolated human K15-GFP+ cells in vitro. Inhibiting the rate-limiting enzyme of polyamine synthesis, ornithine decarboyxlase (ODC), downregulated intrafollicular K15 expression. In primary human epidermal keratinocytes, spermidine slightly promoted entry into the S/G2-M phases of the cell cycle. By microarray analysis of human HF mRNA extracts, spermidine upregulated several key target genes implicated e.g. in the control of cell adherence and migration (POP3), or endoplasmic reticulum and mitochondrial functions (SYVN1, NACA and SLC25A3). Excess spermidine may restrict further intrafollicular polyamine synthesis by inhibiting ODC gene and protein expression in the HF's companion layer in situ. CONCLUSIONS: These physiologically and clinically relevant data provide the first direct evidence that spermidine is a potent stimulator of human hair growth and a previously unknown modulator of human epithelial stem cell biology.


Subject(s)
Epithelial Cells/cytology , Hair/drug effects , Hair/growth & development , Spermidine/pharmacology , Stem Cells/cytology , Stem Cells/metabolism , Cell Proliferation/drug effects , Cell Separation , Colony-Forming Units Assay , Epidermal Cells , Female , Gene Expression Profiling , Green Fluorescent Proteins/metabolism , Hair Follicle/drug effects , Hair Follicle/enzymology , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratins/genetics , Keratins/metabolism , Ornithine Decarboxylase/metabolism , Promoter Regions, Genetic/genetics , Stem Cells/drug effects , Up-Regulation/drug effects
6.
Transgenic Res ; 20(2): 387-96, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20577801

ABSTRACT

Enhanced polyamine catabolism via polyamine acetylation-oxidation elevates the oxidative stress in an organism due to increased production of reactive oxygen species (ROS). We studied a transgenic mouse line overexpressing the rate limiting enzyme in the polyamine catabolism, spermidine/spermine N (1)-acetyltransferase (SSAT) that is characterized by increased putrescine and decreased spermidine and spermine pools. In order to protect the mice from the chronic oxidative stress produced by the activation of polyamine catabolism, the hepatic expression of the transcription factor p53 was found threefold elevated in the transgenic mice. In addition, the prolonged activation of p53 accelerated the aging of transgenic mice and reduced their lifespan (50%). Aging was associated with decreased antioxidant enzyme activities. In the transgenic mice the activities of catalase and Cu, Zn-superoxide dismutase (SOD) were 42 and 23% reduced respectively, while the expression of CYP450 2E1 was 60% decreased and oxidative stress measured as protein carbonyl content was tenfold elevated. In the transgenic mice, the age-related repression of the different antioxidant enzymes served as a protection against the hepatotoxic effects of carbon tetrachloride and thioacetamide.


Subject(s)
Acetyltransferases/genetics , Aging/drug effects , Oxidative Stress/physiology , Polyamines/metabolism , Aging/metabolism , Animals , Carbon Tetrachloride/pharmacology , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Transgenic , Polyamines/pharmacology , Putrescine/metabolism , Putrescine/pharmacology , Spermidine/metabolism , Spermidine/pharmacology , Spermine/metabolism , Spermine/pharmacology , Thioacetamide/pharmacology , Transgenes , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation
7.
J Med Chem ; 53(15): 5738-48, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20684609

ABSTRACT

Biogenic polyamines, spermidine and spermine, are positively charged at physiological pH. They are present in all cells and essential for their growth and viability. Here we synthesized three novel derivatives of the isosteric charge-deficient spermine analogue 1,12-diamino-3,6,9-triazadodecane (SpmTrien, 5a) that are N(1)-Ac-SpmTrien (5c), N(12)-Ac-SpmTrien (5b), and N(1),N(12)-diethyl-1,12-diamino-3,6,9-triazadodecane (N(1),N(12)-Et(2)-SpmTrien, 5d). 5a and 5d readily accumulated in DU145 cells at the same concentration range as natural polyamines and moderately competed for the uptake with putrescine (1) but not with spermine (4a) or spermidine (2). 5a efficiently down-regulated ornithine decarboxylase and decreased polyamine levels, while 5d proved to be inefficient, compared with N(1),N(11)-diethylnorspermine (6). None of the tested analogues were substrates for human recombinant spermine oxidase, but those having free aminoterminus, including 1,8-diamino-3,6-diazaoctane (Trien, 3a), were acetylated by mouse recombinant spermidine/spermine N(1)-acetyltransferase. 5a was acetylated to 5c and 5b, and the latter was further metabolized by acetylpolyamine oxidase to 3a, a drug used to treat Wilson's disease. Thus, 5a is a bioactive precursor of 3a with enhanced bioavailability.


Subject(s)
Spermine/analogs & derivatives , Acetyltransferases/chemistry , Acetyltransferases/genetics , Alternative Splicing/drug effects , Animals , Biogenic Polyamines/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Kinetics , Mice , Oxidoreductases Acting on CH-NH Group Donors/chemistry , Recombinant Proteins/chemistry , Spermine/chemical synthesis , Spermine/chemistry , Spermine/pharmacology , Structure-Activity Relationship , Substrate Specificity , Polyamine Oxidase
8.
Exp Dermatol ; 19(9): 784-90, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20629736

ABSTRACT

Polyamines (spermidine, putrescine and spermine) are multifunctional cationic amines that are indispensable for cellular proliferation; of key significance in the growth of rapidly regenerating tissues and tumors. Given that the hair follicle (HF) is one of the most highly proliferative organs in mammalian biology, it is not surprising that polyamines are crucial to HF growth. Indeed, growing (anagen) HFs show the highest activity of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, while inhibition of ODC, using eflornithine, results in a decreased rate of excessive facial hair growth in vivo and inhibits human scalp hair growth in organ culture. In sheep, manipulation of dietary intake of polyamines also results in altered wool growth. Polyamine-containing nutraceuticals have therefore been proposed as promoters of human hair growth. Recent progress in polyamine research, coupled with renewed interest in the role of polyamines in skin biology, encourages one to revisit their potential roles in HF biology and highlights the need for a systematic evaluation of their mechanisms of action and clinical applications in the treatment of hair disorders. The present viewpoint essay outlines the key frontiers in polyamine-related hair research and defines the major open questions. Moreover, it argues that a renaissance in polyamine research in hair biology, well beyond the inhibition of ODC activity in hirsutism therapy, is important for the development of novel therapeutic strategies for the manipulation of human hair growth. Such targets could include the manipulation of polyamine biosynthesis and the topical administration of selected polyamines, such as spermidine.


Subject(s)
Hair Follicle/metabolism , Polyamines/metabolism , Animals , Eflornithine , Humans , Ornithine Decarboxylase/metabolism , Ornithine Decarboxylase Inhibitors , Skin Neoplasms/etiology , Skin Neoplasms/metabolism
9.
Amino Acids ; 38(2): 583-90, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19956989

ABSTRACT

Recent studies using transgenic animals have revealed a crucial role for polyamines in the development and the growth of skin and hair follicles. In mammals, the growth of hair is characterized by three main cyclic phases of transformation, including a rapid growth phase (anagen), an apoptosis-driven regression phase (catagen) and a relatively quiescent resting phase (telogen). The polyamine pool during the anagen phase is higher than in telogen and catagen phases. In this study, we used alpha-methylspermidine, a metabolically stable polyamine analog, to artificially elevate the polyamine pool during telogen. This manipulation was sufficient to induce hair growth in telogen phase mice after 2 weeks of daily topical application. The application site was characterized by typical features of anagen, such as pigmentation, growing hair follicles, proliferation of follicular keratinocytes and upregulation of beta-catenin. The analog penetrated the protective epidermal layer of the skin and could be detected in dermis. The natural polyamines were partially replaced by the analog in the application site. However, the combined pool of natural spermidine and alpha-methylspermidine exceeded the physiological spermidine pool in telogen phase skin. These results highlight the role of polyamines in hair cycle regulation and show that it is possible to control the process of hair growth using physiologically stable polyamine analogs.


Subject(s)
Hair Follicle/drug effects , Hair Follicle/growth & development , Spermidine/analogs & derivatives , Administration, Cutaneous , Animals , Cell Proliferation/drug effects , Cells, Cultured , Female , Hair Follicle/metabolism , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/metabolism , Mice , Mice, Inbred C57BL , Polyamines/metabolism , Spermidine/administration & dosage , beta Catenin/metabolism
10.
Amino Acids ; 38(2): 549-60, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19956992

ABSTRACT

Transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N(1)-acetyltransferase (SSAT) have significantly reduced plasma total cholesterol levels. In our study, we show that low cholesterol levels were attributable to enhanced bile acid synthesis in combination with reduced cholesterol absorption. Hepatic cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme catalyzing the conversion of cholesterol to bile acids, plays an important role in the removal of excess cholesterol from the body. We suggest that by reducing activity of Akt activated polyamine catabolism increased the stability and activity of peroxisome proliferator-activated receptor gamma co-activator 1alpha, the critical activator of CYP7A1. This is supported by our finding that the treatment with SSAT activator, N (1) ,N(11)-diethylnorspermine, reduced significantly the amount of phosphorylated (active) Akt in HepG2 cells. In summary, activated-polyamine catabolism is a novel mechanism to regulate bile acid synthesis. Therefore, polyamine catabolism could be a potential therapeutic target to control hepatic CYP7A1 expression.


Subject(s)
Bile Acids and Salts/biosynthesis , Biogenic Polyamines/biosynthesis , Cholesterol/blood , Acetyltransferases/genetics , Acetyltransferases/metabolism , Animals , Cholesterol 7-alpha-Hydroxylase/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Female , Hep G2 Cells , Liver/enzymology , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Mice, Transgenic
11.
J Cell Mol Med ; 14(6B): 1683-92, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19538475

ABSTRACT

Impaired adipogenesis has been shown to predispose to disturbed adipocyte function and development of metabolic abnormalities. Previous studies indicate that polyamines are essential in the adipogenesis in 3T3-L1 fibroblasts. However, the specific roles of individual polyamines during adipogenesis have remained ambiguous as the natural polyamines are readily interconvertible inside the cells. Here, we have defined the roles of spermidine and spermine in adipogenesis of 3T3-L1 cells by using (S')- and (R')- isomers of alpha-methylspermidine and (S,S')-, (R,S)- and (R,R')-diastereomers of alpha,omega-bismethylspermine. Polyamine depletion caused by alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, prevented adipocyte differentiation by suppressing the expression of its key regulators, peroxisome proliferator-activated receptor gamma and CCAAT/enhancer binding protein alpha. Adipogenesis was restored by supplementation of methylspermidine isomers but not of bismethylspermine diastereomers. Although both spermidine analogues supported adipocyte differentiation only (S)-methylspermidine was able to fully support cell growth after extended treatment with alpha-DFMO. The distinction between the spermidine analogues in maintaining growth was found to be in their different capability to maintain functional hypusine synthesis. However, the differential ability of spermidine analogues to support hypusine synthesis did not correlate with their ability to support differentiation. Our results show that spermidine, but not spermine, is essential for adipogenesis and that the requirement of spermidine for adipogenesis is not strictly associated with hypusine modification. The involvement of polyamines in the regulation of adipogenesis may offer a potential application for the treatment of dysfunctional adipocytes in patients with obesity and metabolic syndrome.


Subject(s)
Adipocytes/cytology , Adipocytes/drug effects , Cell Differentiation/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Spermidine/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Adipogenesis/drug effects , Adipogenesis/genetics , Animals , Cell Proliferation/drug effects , Cell Shape/drug effects , Eflornithine/pharmacology , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Glucose Transporter Type 4/metabolism , Isomerism , Lipid Metabolism/drug effects , Mice , Organ Specificity/drug effects , Organ Specificity/genetics , Putrescine/analogs & derivatives , Putrescine/pharmacology , Spermidine/analogs & derivatives , Time Factors
12.
Essays Biochem ; 46: 125-44, 2009 Nov 04.
Article in English | MEDLINE | ID: mdl-20095974

ABSTRACT

Cloning of genes related to polyamine metabolism has enabled the generation of genetically modified mice and rats overproducing or devoid of proteins encoded by these genes. Our first transgenic mice overexpressing ODC (ornithine decarboxylase) were generated in 1991 and, thereafter, most genes involved in polyamine metabolism have been used for overproduction of the respective proteins, either ubiquitously or in a tissue-specific fashion in transgenic animals. Phenotypic characterization of these animals has revealed a multitude of changes, many of which could not have been predicted based on the previous knowledge of the polyamine requirements and functions. Animals that overexpress the genes encoding the inducible key enzymes of biosynthesis and catabolism, ODC and SSAT (spermidine/spermine N1-acetyltransferase) respectively, appear to possess the most pleiotropic phenotypes. Mice overexpressing ODC have particularly been used as cancer research models. Transgenic mice and rats with enhanced polyamine catabolism have revealed an association of rapidly depleted polyamine pools and accelerated metabolic cycle with development of acute pancreatitis and a fatless phenotype respectively. The latter phenotype with improved glucose tolerance and insulin sensitivity is useful in uncovering the mechanisms that lead to the opposite phenotype in humans, Type 2 diabetes. Disruption of the ODC or AdoMetDC [AdoMet (S-adenosylmethionine) decarboxylase] gene is not compatible with mouse embryogenesis, whereas mice with a disrupted SSAT gene are viable and show no harmful phenotypic changes, except insulin resistance at a late age. Ultimately, the mice with genetically altered polyamine metabolism can be used to develop targeted means to treat human disease conditions that they relevantly model.


Subject(s)
Animals, Genetically Modified , Polyamines/metabolism , Animals , Gene Transfer Techniques , Genetic Diseases, Inborn/genetics , Genetic Engineering , Humans , Mice , Models, Biological , Neoplasms/genetics , Neoplasms/metabolism , Phenotype , Rats , Transgenes
13.
Mol Cell Biol ; 27(13): 4953-67, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17485446

ABSTRACT

Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) is an attractive candidate gene for type 2 diabetes, as genes of the oxidative phosphorylation (OXPHOS) pathway are coordinatively downregulated by reduced expression of PGC-1 alpha in skeletal muscle and adipose tissue of patients with type 2 diabetes. Here we demonstrate that transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N(1)-acetyltransferase (SSAT) had reduced white adipose tissue (WAT) mass, high basal metabolic rate, improved glucose tolerance, high insulin sensitivity, and enhanced expression of the OXPHOS genes, coordinated by increased levels of PGC-1 alpha and 5'-AMP-activated protein kinase (AMPK) in WAT. As accelerated polyamine flux caused by SSAT overexpression depleted the ATP pool in adipocytes of SSAT mice and N(1),N(11)-diethylnorspermine-treated wild-type fetal fibroblasts, we propose that low ATP levels lead to the induction of AMPK, which in turn activates PGC-1 alpha in WAT of SSAT mice. Our hypothesis is supported by the finding that the phenotype of SSAT mice was reversed when the accelerated polyamine flux was reduced by the inhibition of polyamine biosynthesis in WAT. The involvement of polyamine catabolism in the regulation of energy and glucose metabolism may offer a novel target for drug development for obesity and type 2 diabetes.


Subject(s)
Adipose Tissue, White/growth & development , Energy Metabolism , Glucose/metabolism , Homeostasis , Polyamines/metabolism , AMP-Activated Protein Kinases , Acetyltransferases/metabolism , Adenosine Triphosphate/metabolism , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue, White/cytology , Adipose Tissue, White/drug effects , Adipose Tissue, White/enzymology , Animals , Body Composition/drug effects , Energy Metabolism/drug effects , Feeding Behavior/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Food Deprivation , Gene Expression Regulation, Enzymologic/drug effects , Glucose Intolerance , Homeostasis/drug effects , Hydrogen Peroxide/pharmacology , Isoenzymes/genetics , Isoenzymes/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Organ Size/drug effects , Oxidative Phosphorylation/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors , p38 Mitogen-Activated Protein Kinases/metabolism
14.
J Cell Mol Med ; 10(4): 933-45, 2006.
Article in English | MEDLINE | ID: mdl-17125596

ABSTRACT

The N(1)-acetylation of spermidine or spermine by spermidine/spermine N(1)-acetyltransferase (SSAT) is the ratecontrolling enzymatic step in the polyamine catabolism. We have now generated SSAT knockout (SSAT-KO) mice, which confirmed our earlier results with SSATdeficient embryonic stem (ES) cells showing only slightly affected polyamine homeostasis, mainly manifested as an elevated molar ratio of spermidine to spermine in most tissues indicating the indispensability of SSAT for the spermidine backconversion. Contrary to SSAT deficient ES cells, polyamine pools in SSAT-KO mice remained almost unchanged in response to N(1),N(11)-diethylnorspermine (DENSPM) treatment compared to a significant reduction of the polyamine pools in the wild-type animals and ES cells. Furthermore, SSATKO mice were more sensitive to the toxicity exerted by DENSPM in comparison with wild-type mice. The latter finding indicates that inducible SSAT plays an essential role in vivo in DENSPM treatmentevoked polyamine depletion, but a controversial role in toxicity of DENSPM. Surprisingly, liver polyamine pools were depleted similarly in wild-type and SSAT-KO mice in response to carbon tetrachloride treatment. Further characterization of SSAT knockout mice revealed insulin resistance at old age which supported the role of polyamine catabolism in glucose metabolism detected earlier with our SSAT overexpressing mice displaying enhanced basal metabolic rate, high insulin sensitivity and improved glucose tolerance. Therefore SSAT knockout mice might serve as a novel mouse model for type 2 diabetes.


Subject(s)
Acetyltransferases/physiology , Aging , Insulin Resistance , Polyamines/metabolism , Acetyltransferases/biosynthesis , Acetyltransferases/genetics , Animals , Carbon Tetrachloride/toxicity , Disease Models, Animal , Enzyme Induction , Glucose , Homeostasis , Liver/drug effects , Liver/metabolism , Mice , Mice, Knockout , Spermidine/metabolism , Spermine/analogs & derivatives , Spermine/metabolism , Spermine/toxicity
15.
J Biochem ; 139(2): 155-60, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16452302

ABSTRACT

Activation of polyamine catabolism through the overexpression of spermidine/spermine N1-acetyltransferase (SSAT) in transgenic rodents does not only lead to distorted tissue polyamine homeostasis, manifested as striking accumulation of putrescine, appearance N1-acetylspermidine and reduction of tissue spermidine and/or spermine pools, but likewise creates striking phenotypic changes. The latter include loss of hair, lipoatrophy and female infertility. Forced expression of SSAT modulates skin, prostate and intestinal carcinogenesis, induces acute pancreatitis and blocks early liver regeneration. Although many of these features are directly attributable to altered tissue polyamine pools, some of them are more likely related to the greatly accelerated flux of the polyamines caused by activated catabolism and compensatorily enhanced biosynthesis.


Subject(s)
Acetyltransferases/genetics , Neoplasms/genetics , Polyamines/metabolism , Acetyltransferases/metabolism , Animals , Animals, Genetically Modified , Gene Expression Regulation/genetics , Gene Transfer Techniques , Genetic Predisposition to Disease , Mice , Rats
16.
J Cell Mol Med ; 9(4): 865-82, 2005.
Article in English | MEDLINE | ID: mdl-16364196

ABSTRACT

The polyamines putrescine, spermidine and spermine are natural components of all living cells. Although their exact cellular functions are still largely unknown, a constant supply of these compounds is required for mammalian cell proliferation to occur. Studies with animals displaying genetically altered polyamine metabolism have shown that polyamines are intimately involved in the development of diverse tumors, putrescine apparently has specific role in skin physiology and neuroprotection and the higher polyamines spermidine and spermine are required for the maintenance of pancreatic integrity and liver regeneration. In the absence of ongoing polyamine biosynthesis, murine embryogenesis does not proceed beyond the blastocyst stage. The last years have also witnessed the appearance of the first reports linking genetically altered polyamine metabolism to human diseases.


Subject(s)
Disease Models, Animal , Genetic Engineering/methods , Polyamines/chemistry , Polyamines/metabolism , Animals , Animals, Genetically Modified , Female , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Models, Biological , Mutation , Neoplasms/genetics , Neoplasms/pathology , Phenotype , Rats
17.
J Invest Dermatol ; 124(3): 596-601, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15737201

ABSTRACT

Overexpression of the rate-limiting enzyme in polyamine catabolism spermidine/spermine N1-acetyltransferase (SSAT) in transgenic (Tg) mouse leads to accumulation of putrescine in the skin and permanent hair loss at the age of 3 wk. The hair follicles of these mice are replaced by dermal cysts and epidermal utriculi. Increased putrescine production is also seen in hyperproliferative cutaneous disorders such as in psoriasis. These disorders are characterized by delayed onset of epidermal differentiation characterized as reduced expression of terminal differentiation markers such as cytokeratins 1/10, and filaggrin and persisting expression of basal cell cytokeratins 5/14 in the suprabasal layers. The use of these markers in immunohistological analysis of SSAT Tg skin clearly showed signs of disturbed differentiation. To exclude the possibility that changes in differentiation originated from underlying connective tissue, we introduced SSAT gene into an established rat epidermal cell line. Organotypic cultures derived from the transfected cells displayed similar changes in their differentiation pattern as keratinocytes in Tg skin. The role of accumulated putrescine in cutaneous changes of SSAT Tg mice was verified by an experiment in which putrescine level was reduced by systemic putrescine biosynthesis inhibition. The putrescine reduction was sufficient to alleviate the cutaneous changes to such an extent that distinct hair regrowth could be seen. These results suggest that the cutaneous changes of SSAT Tg animals are due to disorders of the keratinocyte differentiation. Moreover, they strengthen the view that the proper regulation of polyamine metabolism plays an important role in the keratinocyte maturation.


Subject(s)
Acetyltransferases/genetics , Keratinocytes/enzymology , Skin Diseases/metabolism , Skin Diseases/physiopathology , Acetyltransferases/metabolism , Animals , Basement Membrane/cytology , Cell Differentiation/physiology , Cells, Cultured , Gene Expression Regulation, Enzymologic , Hair Follicle/enzymology , Hair Follicle/pathology , Keratinocytes/pathology , Mice , Mice, Transgenic , Organ Culture Techniques , Putrescine/metabolism , Rats , Skin Diseases/pathology
18.
Eur J Biochem ; 271(5): 877-94, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15009201

ABSTRACT

The polyamines putrescine, spermidine and spermine are organic cations shown to participate in a bewildering number of cellular reactions, yet their exact functions in intermediary metabolism and specific interactions with cellular components remain largely elusive. Pharmacological interventions have demonstrated convincingly that a steady supply of these compounds is a prerequisite for cell proliferation to occur. The last decade has witnessed the appearance of a substantial number of studies, in which genetic engineering of polyamine metabolism in transgenic rodents has been employed to unravel their cellular functions. Transgenic activation of polyamine biosynthesis through an overexpression of their biosynthetic enzymes has assigned specific roles for these compounds in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase, as achieved through targeted disruption of their genes, is not compatible with murine embryogenesis. Finally, the first reports of human diseases apparently caused by mutations or rearrangements of the genes involved in polyamine metabolism have appeared.


Subject(s)
Adenosylmethionine Decarboxylase/genetics , Ornithine Decarboxylase/genetics , Polyamines/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism , Adenosylmethionine Decarboxylase/metabolism , Animals , Animals, Genetically Modified , Cardiomegaly/genetics , Humans , Neoplasms/genetics , Neoplasms/physiopathology , Ornithine Decarboxylase/metabolism , Skin/pathology , Spermine Synthase/genetics , Spermine Synthase/metabolism
19.
J Biol Chem ; 277(28): 25323-8, 2002 Jul 12.
Article in English | MEDLINE | ID: mdl-12000764

ABSTRACT

We have generated mouse embryonic stem cells with targeted disruption of spermidine/spermine N(1)-acetyltransferase (SSAT) gene. The targeted cells did not contain any inducible SSAT activity, and the SSAT protein was not present. The SSAT-deficient cells proliferated normally and appeared to maintain otherwise similar polyamine pools as did the wild-type cells, with the possible exception of constantly elevated (about 30%) cellular spermidine. As expected, the mutated cells were significantly more resistant toward the growth-inhibitory action of polyamine analogues, such as N(1),N(11)-diethylnorspermine. However, this resistance was not directly attributable to cellular depletion of the higher polyamines spermidine and spermine, as the analogue depleted the polyamine pools almost equally effectively in both wild-type and SSAT-deficient cells. Tracer experiments with [C(14)]-labeled spermidine revealed that SSAT activity is essential for the back-conversion of spermidine to putrescine as radioactive N(1)-acetylspermidine and putrescine were readily detectable in N(1),N(11)-diethylnorspermine-exposed wild-type cells but not in SSAT-deficient cells. Similar experiments with [C(14)]spermine indicated that the latter polyamine was converted to spermidine in both cell lines and, unexpectedly, more effectively in the targeted cells than in the parental cells. This back-conversion was only partly inhibited by MDL72527, an inhibitor of polyamine oxidase. These results indicated that SSAT does not play a major role in the maintenance of polyamine homeostasis, and the toxicity exerted by polyamine analogues is largely not based on SSAT-induced depletion of the natural polyamines. Moreover, embryonic stem cells appear to operate an SSAT-independent system for the back-conversion of spermine to spermidine.


Subject(s)
Acetyltransferases/metabolism , Biogenic Polyamines/metabolism , Embryo, Mammalian/cytology , Homeostasis , Stem Cells/enzymology , Acetyltransferases/genetics , Animals , Base Sequence , DNA Primers , Mice
20.
Biochem J ; 362(Pt 1): 149-53, 2002 Feb 15.
Article in English | MEDLINE | ID: mdl-11829751

ABSTRACT

A large number of studies applying inhibitors of polyamine biosynthesis have indicated that these compounds are required for animal cell proliferation. Here we show, using a transgenic rat model with activated polyamine catabolism, that a certain critical concentration of the higher polyamines spermidine and spermine is required for liver regeneration. Partial hepatectomy of transgenic rats expressing spermidine/spermine N(1)-acetyltransferase (SSAT) under the control of mouse metallothionein promoter strikingly induced the enzyme at 24 h and reduced hepatic spermidine by 80%. At that time, the weight of the liver remnant was significantly increased in syngenic rats and proliferating cell nuclear antigen (PCNA) labelling index was 20%, whereas the transgenic rats showed no liver weight gain and their PCNA-positive cells accounted for 0.5% of hepatocytes. Similarly, hepatic thymidine incorporation was markedly enhanced at this time point in syngenic, but not in transgenic, animals, whereas the rate of leucine incorporation was only marginally affected in the transgenic animals. At 3 days after operation, the spermidine pool in transgenic livers had increased to the pre-operative level, the remnant weight was significantly elevated and hepatic PCNA labelling index increased to 5%. N(1),N(11)-Diethylnorspermine, a powerful inducer of SSAT, inhibited liver weight gain and proliferative activity in both syngenic and transgenic rats. We found an extremely close correlation between hepatic spermidine, and less close between spermine, concentrations and PCNA labelling index during early liver regeneration. These results indicate that spermidine and/or spermine, but apparently not putrescine, are required for liver regeneration, yet at concentrations smaller than those normally found after partial hepatectomy.


Subject(s)
Biogenic Polyamines/physiology , Liver Regeneration/physiology , Animals , Animals, Genetically Modified , Cell Division , Hepatectomy , Immunohistochemistry , Organ Size , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...