Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 220(8): 1312-1324, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31253993

ABSTRACT

BACKGROUND: Viruses and other infectious agents cause more than 15% of human cancer cases. High-throughput sequencing-based studies of virus-cancer associations have mainly focused on cancer transcriptome data. METHODS: In this study, we applied a diverse selection of presequencing enrichment methods targeting all major viral groups, to characterize the viruses present in 197 samples from 18 sample types of cancerous origin. Using high-throughput sequencing, we generated 710 datasets constituting 57 billion sequencing reads. RESULTS: Detailed in silico investigation of the viral content, including exclusion of viral artefacts, from de novo assembled contigs and individual sequencing reads yielded a map of the viruses detected. Our data reveal a virome dominated by papillomaviruses, anelloviruses, herpesviruses, and parvoviruses. More than half of the included samples contained 1 or more viruses; however, no link between specific viruses and cancer types were found. CONCLUSIONS: Our study sheds light on viral presence in cancers and provides highly relevant virome data for future reference.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Metagenome/genetics , Neoplasms/virology , Anelloviridae/genetics , Anelloviridae/isolation & purification , Biopsy , Datasets as Topic , Female , Herpesviridae/genetics , Herpesviridae/isolation & purification , Humans , Male , Neoplasms/pathology , Papillomaviridae/genetics , Papillomaviridae/isolation & purification , Parvovirus/genetics , Parvovirus/isolation & purification
2.
PLoS One ; 14(1): e0210368, 2019.
Article in English | MEDLINE | ID: mdl-30640944

ABSTRACT

Human viral pathogens are a major public health threat. Reliable information that accurately describes and characterizes the global occurrence and transmission of human viruses is essential to support national and global priority setting, public health actions, and treatment decisions. However, large areas of the globe are currently without surveillance due to limited health care infrastructure and lack of international cooperation. We propose a novel surveillance strategy, using metagenomic analysis of toilet material from international air flights as a method for worldwide viral disease surveillance. The aim of this study was to design, implement, and evaluate a method for viral analysis of airplane toilet waste enabling simultaneous detection and quantification of a wide range of human viral pathogens. Toilet waste from 19 international airplanes was analyzed for viral content, using viral capture probes followed by high-throughput sequencing. Numerous human pathogens were detected including enteric and respiratory viruses. Several geographic trends were observed with samples originating from South Asia having significantly higher viral species richness as well as higher abundances of salivirus A, aichivirus A and enterovirus B, compared to samples originating from North Asia and North America. In addition, certain city specific trends were observed, including high numbers of rotaviruses in airplanes departing from Islamabad. Based on this study we believe that central sampling and analysis at international airports could be a useful supplement for global viral surveillance, valuable for outbreak detection and for guiding public health resources.


Subject(s)
Aircraft , Bathroom Equipment/virology , Sewage/virology , Viruses/genetics , Viruses/isolation & purification , Air Travel , Communicable Diseases/epidemiology , Epidemiological Monitoring , Humans , Metagenomics , Public Health Surveillance , Toilet Facilities , Virus Diseases/epidemiology , Viruses/pathogenicity
3.
Nat Commun ; 8(1): 1188, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29084957

ABSTRACT

DNA metabarcoding is promising for cost-effective biodiversity monitoring, but reliable diversity estimates are difficult to achieve and validate. Here we present and validate a method, called LULU, for removing erroneous molecular operational taxonomic units (OTUs) from community data derived by high-throughput sequencing of amplified marker genes. LULU identifies errors by combining sequence similarity and co-occurrence patterns. To validate the LULU method, we use a unique data set of high quality survey data of vascular plants paired with plant ITS2 metabarcoding data of DNA extracted from soil from 130 sites in Denmark spanning major environmental gradients. OTU tables are produced with several different OTU definition algorithms and subsequently curated with LULU, and validated against field survey data. LULU curation consistently improves α-diversity estimates and other biodiversity metrics, and does not require a sequence reference database; thus, it represents a promising method for reliable biodiversity estimation.


Subject(s)
Algorithms , Biodiversity , DNA Barcoding, Taxonomic/methods , DNA/genetics , High-Throughput Nucleotide Sequencing/methods , Cluster Analysis , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Plants/genetics , Reproducibility of Results
4.
Mol Genet Genomic Med ; 4(4): 420-30, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27468418

ABSTRACT

BACKGROUND: The color of the eyes is one of the most prominent phenotypes in humans and it is often used to describe the appearance of an individual. The intensity of pigmentation in the iris is strongly associated with one single-nucleotide polymorphism (SNP), rs12913832:A>G that is located in the promotor region of OCA2 (OMIM #611409). Nevertheless, many eye colors cannot be explained by only considering rs12913832:A>G. METHODS: In this study, we searched for additional variants in OCA2 to explain human eye color by sequencing a 500 kbp region, encompassing OCA2 and its promotor region. RESULTS: We identified three nonsynonymous OCA2 variants as important for eye color, including rs1800407:G>A (p.Arg419Gln) and two variants, rs74653330:A>T (p.Ala481Thr) and rs121918166:G>A (p.Val443Ile), not previously described as important for eye color variation. It was shown that estimated haplotypes consisting of four variants (rs12913832:A>G, rs1800407:G>A (p.Arg419Gln), rs74653330:A>T (p.Ala481Thr), and rs121918166:G>A (p.Val443Ile)) explained 75.6% (adjusted R (2) = 0.76) of normal eye color variation, whereas rs12913832:A>G alone explained 68.8% (adjusted R (2) = 0.69). Moreover, rs74653330:A>T (p.Ala481Thr) and rs121918166:G>A (p.Val443Ile) had a measurable effect on quantitative skin color (P = 0.008). CONCLUSION: Our data showed that rs74653330:A>T (p.Ala481Thr) and rs121918166:G>A (p.Val443Ile) have a measurable effect on normal pigmentation variation.

5.
Biotechniques ; 57(2): 91-4, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25109295

ABSTRACT

The simultaneous sequencing of samples from multiple individuals increases the efficiency of next-generation sequencing (NGS) while also reducing costs. Here we describe a novel and simple approach for sequencing DNA from multiple individuals per barcode. Our strategy relies on the endonuclease digestion of PCR amplicons prior to library preparation, creating a specific fragment pattern for each individual that can be resolved after sequencing. By using both barcodes and restriction fragment patterns, we demonstrate the ability to sequence the human melanocortin 1 receptor (MC1R) genes from 72 individuals using only 24 barcoded libraries.


Subject(s)
Endonucleases/genetics , High-Throughput Nucleotide Sequencing/methods , Receptor, Melanocortin, Type 1/genetics , DNA/genetics , DNA Barcoding, Taxonomic , Genotyping Techniques/methods , Humans
6.
Forensic Sci Int Genet ; 11: 1-6, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24631691

ABSTRACT

In two recent studies of Spanish individuals, gender was suggested as a factor that contributes to human eye colour variation. However, gender did not improve the predictive accuracy on blue, intermediate and brown eye colours when gender was included in the IrisPlex model. In this study, we investigate the role of gender as a factor that contributes to eye colour variation and suggest that the gender effect on eye colour is population specific. A total of 230 Italian individuals were typed for the six IrisPlex SNPs (rs12913832, rs1800407, rs12896399, rs1393350, rs16891982 and rs12203592). A quantitative eye colour score (Pixel Index of the Eye: PIE-score) was calculated based on digital eye images using the custom made DIAT software. The results were compared with those of Danish and Swedish population samples. As expected, we found HERC2 rs12913832 as the main predictor of human eye colour independently of ancestry. Furthermore, we found gender to be significantly associated with quantitative eye colour measurements in the Italian population sample. We found that the association was statistically significant only among Italian individuals typed as heterozygote GA for HERC2 rs12913832. Interestingly, we did not observe the same association in the Danish and Swedish population. This indicated that the gender effect on eye colour is population specific. We estimated the effect of gender on quantitative eye colour in the Italian population sample to be 4.9%. Among gender and the IrisPlex SNPs, gender ranked as the second most important predictor of human eye colour variation in Italians after HERC2 rs12913832. We, furthermore, tested the five lower ranked IrisPlex predictors, and evaluated all possible 3(6) (729) genotype combinations of the IrisPlex assay and their corresponding predictive values using the IrisPlex prediction model [4]. The results suggested that maximum three (rs12913832, rs1800407, rs16891982) of the six IrisPlex SNPs are useful in practical forensic genetic casework.


Subject(s)
Eye Color/genetics , Models, Genetic , Sex Factors , Europe , Female , Humans , Male , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...