Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Trop ; 258: 107324, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009235

ABSTRACT

Mosquito-borne diseases are a known tropical phenomenon. This review was conducted to assess the mecha-nisms through which climate change impacts mosquito-borne diseases in temperate regions. Articles were searched from PubMed, Scopus, Web of Science, and Embase databases. Identification criteria were scope (climate change and mosquito-borne diseases), region (temperate), article type (peer-reviewed), publication language (English), and publication years (since 2015). The WWH (who, what, how) framework was applied to develop the research question and thematic analyses identified the mechanisms through which climate change affects mosquito-borne diseases. While temperature ranges for disease transmission vary per mosquito species, all are viable for temperate regions, particularly given projected temperature increases. Zika, chikungunya, and dengue transmission occurs between 18-34 °C (peak at 26-29 °C). West Nile virus establishment occurs at monthly average temperatures between 14-34.3 °C (peak at 23.7-25 °C). Malaria establishment occurs when the consecutive average daily temperatures are above 16 °C until the sum is above 210 °C. The identified mechanisms through which climate change affects the transmission of mosquito-borne diseases in temperate regions include: changes in the development of vectors and pathogens; changes in mosquito habitats; extended transmission seasons; changes in geographic spread; changes in abundance and behaviors of hosts; reduced abundance of mosquito predators; interruptions to control operations; and influence on other non-climate factors. Process and stochastic approaches as well as dynamic and spatial models exist to predict mosquito population dynamics, disease transmission, and climate favorability. Future projections based on the observed relations between climate factors and mosquito-borne diseases suggest that mosquito-borne disease expansion is likely to occur in temperate regions due to climate change. While West Nile virus is already established in some temperate regions, Zika, dengue, chikungunya, and malaria are also likely to become established over time. Moving forward, more research is required to model future risks by incorporating climate, environmental, sociodemographic, and mosquito-related factors under changing climates.

2.
J Hydrol Eng ; 26(9)2021 Sep.
Article in English | MEDLINE | ID: mdl-34497453

ABSTRACT

Hydrologic model intercomparison studies help to evaluate the agility of models to simulate variables such as streamflow, evaporation, and soil moisture. This study is the third in a sequence of the Great Lakes Runoff Intercomparison Projects. The densely populated Lake Erie watershed studied here is an important international lake that has experienced recent flooding and shoreline erosion alongside excessive nutrient loads that have contributed to lake eutrophication. Understanding the sources and pathways of flows is critical to solve the complex issues facing this watershed. Seventeen hydrologic and land-surface models of different complexity are set up over this domain using the same meteorological forcings, and their simulated streamflows at 46 calibration and seven independent validation stations are compared. Results show that: (1) the good performance of Machine Learning models during calibration decreases significantly in validation due to the limited amount of training data; (2) models calibrated at individual stations perform equally well in validation; and (3) most distributed models calibrated over the entire domain have problems in simulating urban areas but outperform the other models in validation.

SELECTION OF CITATIONS
SEARCH DETAIL
...