Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37420768

ABSTRACT

The paper works on the new combination between the No Motion No Integration filter (NMNI) and the Kalman Filter (KF) to optimize the conducted vibration for orientation angles during drone operation. The drone's roll, pitch, and yaw with just accelerometer and gyroscope were analyzed under the noise impact. A 6 Degree of Freedom (DoF) Parrot Mambo drone with Matlab/Simulink package was used to validate the advancements before and after fusing NMNI with KF. The drone propeller motors were controlled at a suitable speed level to keep the drone on the zero-inclination ground for angle error validation. The experiments show that KF alone successfully minimizes the variation for the inclination, but it still needs the NMNI support to enhance the performance in noise deduction, with the error only about 0.02°. In addition, the NMNI algorithm successfully prevents the yaw/heading from gyroscope drifting due to the zero-value integration during no rotation with the maximum error of 0.03°.


Subject(s)
Algorithms , Unmanned Aerial Devices , Rotation , Vibration
3.
Sensors (Basel) ; 21(21)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34770557

ABSTRACT

Discovering very small water leaks at the household level is one of the most challenging goals of smart metering. While many solutions for sudden leakage detection have been proposed to date, the small leaks are still giving researchers a hard time. Even if some devices can be found on the market, their capability to detect a water leakage barely reaches the sensitivity of the employed mechanical water meter, which was not designed for detecting small water leakages. This paper proposes a technique for improving the sensitivity of the mechanical register water meters. By implementing this technique in a suitable electronic add-on device, the improved sensitivity could detect very small leaks. This add-on device continuously acquires the mechanical register's digital images and, thanks to suitable image processing techniques and metrics, allows very small flows to be detected even if lower than the meter starting flow rate. Experimental tests were performed on two types of mechanical water meters, multijet and piston, whose starting flow rates are 8 L/h and 1 L/h, respectively. Results were very interesting in the leakage range of [1.0, 10.0] L/h for the multijet and even in the range [0.25, 1.00] L/h for the piston meter.


Subject(s)
Image Processing, Computer-Assisted , Water
4.
Sensors (Basel) ; 21(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810301

ABSTRACT

Coronavirus disease 19 (COVID-19) is a virus that spreads through contact with the respiratory droplets of infected persons, so quarantine is mandatory to break the infection chain. This paper proposes a wearable device with the Internet of Things (IoT) integration for real-time monitoring of body temperature the indoor condition via an alert system to the person in quarantine. The alert is transferred when the body thermal exceeds the allowed threshold temperature. Moreover, an algorithm Repetition Spikes Counter (RSC) based on an accelerometer is employed in the role of human activity recognition to realize whether the quarantined person is doing physical exercise or not, for auto-adjustment of threshold temperature. The real-time warning and stored data analysis support the family members/doctors in following and updating the quarantined people's body temperature behavior in the tele-distance. The experiment includes an M5stickC wearable device, a Microelectromechanical system (MEMS) accelerometer, an infrared thermometer, and a digital temperature sensor equipped with the user's wrist. The indoor temperature and humidity are measured to restrict the virus spread and supervise the room condition of the person in quarantine. The information is transferred to the cloud via Wi-Fi with Message Queue Telemetry Transport (MQTT) broker. The Bluetooth is integrated as an option for the data transfer from the self-isolated person to the electronic device of a family member in the case of Wi-Fi failed connection. The tested result was obtained from a student in quarantine for 14 days. The designed system successfully monitored the body temperature, exercise activity, and indoor condition of the quarantined person that handy during the Covid-19 pandemic.


Subject(s)
Accelerometry , Body Temperature , COVID-19 , Internet of Things , Micro-Electrical-Mechanical Systems , Quarantine , Thermometry , Humans , Pandemics , Telemetry
SELECTION OF CITATIONS
SEARCH DETAIL
...