Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Transplant Proc ; 42(10): 4479-87, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21168721

ABSTRACT

The aim of this study was to describe the epidemiology and utilization of anti-hepatitis B core protein(+) and anti-hepatitis C virus(+) organ donor referrals in a large organ procurement organization. Between 1995 and 2006, 3,134 deceased organ donor referrals were tested for anti-HBc and anti-HCV using commercial assays. The prevalence of anti-HCV(+) organ donor referrals significantly increased from 3.4% in 1994-1996 to 8.1% in 2003-2005 (P < .001), whereas the prevalence of anti-HBc(+) organ donor referrals remained unchanged at 3%-4% (P = .20). The 112 anti-HBc(+) (3.5%) and 173 anti-HCV(+) (5.5%) organ donor referrals were significantly older and more likely to be noncaucasian than seronegative organ donor referrals (P < .02). The procurement and utilization rates of seropositive thoracic and abdominal donor organs were significantly lower compared with seronegative organ donors (P < .0001). However, liver utilization rates significantly increased from anti-HBc(+) donors over time (21% vs 46%; P = .026), whereas utilization of anti-HCV(+) liver donors remained unchanged over time (5% vs 18%; P = .303). In summary, the proportion of anti-HCV(+) organ donor referrals has significantly increased and the proportion of anti-HBc(+) organ donor referrals has remained stable. Both thoracic and abdominal organs from seropositive donors are largely underutilized.


Subject(s)
Abdomen , HIV Infections , Hepatitis B , Hepatitis C , Thorax , Tissue Donors , Humans
2.
Am J Transplant ; 9(10): 2416-23, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19656129

ABSTRACT

Travel to procure deceased donor organs is associated with risk to transplant personnel. In many instances, multiple teams are present for a given operation. We studied our statewide experience to determine how much excess travel this redundancy entails, and generated alternate models for organ recovery. We reviewed our organ procurement organization's experience with deceased donor operations between 2002 and 2008. Travel was expressed as cumulative person-miles between procurement team origin and donor hospital. A model of minimal travel was created, using thoracic and abdominal teams from the closest in-state center. A second model involved transporting donors to a dedicated procurement facility. Travel distance was recalculated using these models, and mode and cost of travel extrapolated from current practices. In 654 thoracic and 1469 abdominal donors studied, the mean travel for thoracic teams was 1066 person-miles and for abdominal teams was 550 person-miles. The mean distance traveled by thoracic and abdominal organs was 223 miles and 142 miles, respectively. Both hypothetical models showed reductions in team travel and reliance on air transport, with favorable costs and organ transport times compared to historical data. In summary, we found significant inefficiency in current practice, which may be alleviated using new paradigms for donor procurement.


Subject(s)
Tissue and Organ Procurement/standards , Humans , Michigan , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL