Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36295346

ABSTRACT

The paper presents the issues related to the design and assessment of the technical condition as well as determination of the residual durability of pressure equipment. Based on a real a example, a liquid nitrogen spherical tank, we present the development and applicability of the method for assessment of the durability of the structure. In terms of the material itself, the authors analyze macroscale (structural) factors of the geometry of the real structure (by 3D scanning: material wear detection, deflections and deformations, etc.) and measured real operational loads to develop an integrated method, including material model and behavior in its operational condition, delivering a useful tool for macroscale structural analyses of the materials under complex load (mechanical, thermal, chemical, etc.). As a result, a detailed analysis of the tank is presented. The paper gives an idea of the method, its development, usefulness, and applicability of the presented approach by indication of the mutual influence of pressure vessel components (e.g., stubs, manholes) and operational loads, which may result in underestimating the strength and durability of the pressure vessels in the design process and during operation.

2.
Materials (Basel) ; 15(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35407739

ABSTRACT

The ongoing shift towards hybrid and electric vehicles has a strong impact on noise and vibration engineering. New, complex dynamic phenomena are brought to vehicle user attention due to the absence of internal combustion engines and the significant role in vehicle and drive feel perception. This paper presents an FEM (Finite Element Method) dynamic simulation model of an automotive Electric Power Steering assembly. Preliminary modal simulations and experiments as well as field data replication techniques were implemented to identify the phenomena and prepare and validate model components. A full dynamic model of an Electric Power Steering was presented, and fine-tuned including the presence of lubrication at the gear mesh interface. Experimental investigations were conducted alongside FEM simulations for various model setups. Linear and nonlinear contact stiffness models were implemented, as well as contact damping, and simulated at chosen assembly interfaces. The results indicated that in the case of NVH (Noise Vibration and Harshness) analysis of shock/impact originating problems, contact parameters used for static, quasi-static, and low velocity analyses were not applicable. Nonlinear and damped contact stiffness provided better results in such a case.

SELECTION OF CITATIONS
SEARCH DETAIL
...