Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotox Res ; 41(4): 362-379, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37129835

ABSTRACT

Stroke and perinatal asphyxia have detrimental effects on neuronal cells, causing millions of deaths worldwide each year. Since currently available therapies are insufficient, there is an urgent need for novel neuroprotective strategies to address the effects of cerebrovascular accidents. One such recent approach is based on the neuroprotective properties of estrogen receptors (ERs). However, activation of ERs by estrogens may contribute to the development of endometriosis or hormone-dependent cancers. Therefore, in this study, we utilized ospemifene, a novel selective estrogen receptor modulator (SERM) already used in dyspareunia treatment. Here, we demonstrated that posttreatment with ospemifene in primary neocortical cell cultures subjected to 18 h of hypoxia and/or ischemia followed by 6 h of reoxygenation has robust neuroprotective potential. Ospemifene partially reverses hypoxia- and ischemia-induced changes in LDH release, the degree of neurodegeneration, and metabolic activity. The mechanism of the neuroprotective actions of ospemifene involves the inhibition of apoptosis since the compound decreases caspase-3 overactivity during hypoxia and enhances mitochondrial membrane potential during ischemia. Moreover, in both models, ospemifene decreased the levels of the proapoptotic proteins BAX, FAS, FASL, and GSK3ß while increasing the level of the antiapoptotic protein BCL2. Silencing of specific ERs showed that the neuroprotective actions of ospemifene are mediated mainly via ESR1 (during hypoxia and ischemia) and GPER1 (during hypoxia), which is supported by ospemifene-evoked increases in ESR1 protein levels in hypoxic and ischemic neurons. The results identify ospemifene as a promising neuroprotectant, which in the future may be used to treat injuries due to brain hypoxia/ischemia.


Subject(s)
Receptors, Estrogen , Stroke , Pregnancy , Female , Humans , Receptors, Estrogen/metabolism , Hypoxia/metabolism , Neurons , Apoptosis , Stroke/metabolism , Ischemia/metabolism
2.
Biomedicines ; 9(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34440058

ABSTRACT

In this study, we demonstrate for the first time that amorfrutin B, a selective modulator of peroxisome proliferator-activated receptor gamma-PPARγ, can protect brain neurons from hypoxia- and ischemia-induced degeneration when applied at 6 h post-treatment in primary cultures. The neuroprotective effect of amorfrutin B suggests that it promotes mitochondrial integrity and is capable of inhibiting reactive oxygen species-ROS activity and ROS-mediated DNA damage. PPARγ antagonist and Pparg mRNA silencing abolished the neuroprotective effect of amorfrutin B, which points to agonistic action of the compound on the respective receptor. Interestingly, amorfrutin B stimulated the methylation of the Pparg gene, both during hypoxia and ischemia. Amorfrutin B also increased the protein level of PPARγ during hypoxia but decreased the mRNA and protein levels of PPARγ during ischemia. Under ischemic conditions, amorfrutin B-evoked hypermethylation of the Pparg gene is in line with the decrease in the mRNA and protein expression of PPARγ. However, under hypoxic conditions, amorfrutin B-dependent hypermethylation of the Pparg gene does not explain the amorfrutin B-dependent increase in receptor protein expression, which suggests other regulatory mechanisms. Other epigenetic parameters, such as HAT and/or sirtuins activities, were affected by amorfrutin B under hypoxic and ischemic conditions. These properties position the compound among the most promising anti-stroke and wide-window therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...