Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835454

ABSTRACT

Nuclear- and membrane-initiated estrogen signaling cooperate to orchestrate the pleiotropic effects of estrogens. Classical estrogen receptors (ERs) act transcriptionally and govern the vast majority of hormonal effects, whereas membrane ERs (mERs) enable acute modulation of estrogenic signaling and have recently been shown to exert strong neuroprotective capacity without the negative side effects associated with nuclear ER activity. In recent years, GPER1 was the most extensively characterized mER. Despite triggering neuroprotective effects, cognitive improvements, and vascular protective effects and maintaining metabolic homeostasis, GPER1 has become the subject of controversy, particularly due to its participation in tumorigenesis. This is why interest has recently turned toward non-GPER-dependent mERs, namely, mERα and mERß. According to available data, non-GPER-dependent mERs elicit protective effects against brain damage, synaptic plasticity impairment, memory and cognitive dysfunctions, metabolic imbalance, and vascular insufficiency. We postulate that these properties are emerging platforms for designing new therapeutics that may be used in the treatment of stroke and neurodegenerative diseases. Since mERs have the ability to interfere with noncoding RNAs and to regulate the translational status of brain tissue by affecting histones, non-GPER-dependent mERs appear to be attractive targets for modern pharmacotherapy for nervous system diseases.


Subject(s)
Central Nervous System Diseases , Molecular Targeted Therapy , Receptors, Estrogen , Brain/metabolism , Receptors, Estrogen/metabolism , Signal Transduction , Central Nervous System Diseases/drug therapy
2.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884933

ABSTRACT

Triclocarban is a highly effective and broadly used antimicrobial agent. Humans are continually exposed to triclocarban, but the safety of prenatal exposure to triclocarban in the context of neurodevelopment remains unknown. In this study, we demonstrated for the first time that mice that had been prenatally exposed to environmentally relevant doses of triclocarban had impaired estrogen receptor 1 (ESR1) signaling in the brain. These mice displayed decreased mRNA and protein expression levels of ESR1 as well as hypermethylation of the Esr1 gene in the cerebral cortex. Prenatal exposure to triclocarban also diminished the mRNA expression of Esr2, Gper1, Ahr, Arnt, Cyp19a1, Cyp1a1, and Atg7, and the protein levels of CAR, ARNT, and MAP1LC3AB in female brains and decreased the protein levels of BCL2, ARNT, and MAP1LC3AB in male brains. In addition, exposure to triclocarban caused sex-specific alterations in the methylation levels of global DNA and estrogen receptor genes. Microarray and enrichment analyses showed that, in males, triclocarban dysregulated mainly neurogenesis-related genes, whereas, in females, the compound dysregulated mainly neurotransmitter-related genes. In conclusion, our data identified triclocarban as a neurodevelopmental risk factor that particularly targets ESR1, affects apoptosis and autophagy, and in sex-specific ways disrupts the epigenetic status of brain tissue and dysregulates the postnatal expression of neurogenesis- and neurotransmitter-related genes.


Subject(s)
Brain/drug effects , Carbanilides/toxicity , Estrogen Receptor alpha/metabolism , Neurogenesis/drug effects , Prenatal Exposure Delayed Effects , Animals , Anti-Infective Agents, Local/toxicity , Blood-Brain Barrier/drug effects , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Female , Gene Expression Regulation/drug effects , Male , Mice , Neurogenesis/genetics , Neurotransmitter Agents/genetics , Neurotransmitter Agents/metabolism , Pregnancy , Sex Factors , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...