Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080873

ABSTRACT

Precipitation is among the most important meteorological variables for, e.g., meteorological, hydrological, water management and climate studies. In recent years, non-catching precipitation gauges are increasingly adopted in meteorological networks. Despite such growing diffusion, calibration procedures and associated uncertainty budget are not yet standardized or prescribed in best practice documents and standards. This paper reports a metrological study aimed at proposing calibration procedures and completing the uncertainty budgets, to make non-catching precipitation gauge measurements traceable to primary standards. The study is based on the preliminary characterization of different rain drop generators, specifically developed for the investigation. Characterization of different models of non-catching rain gauges is also included.


Subject(s)
Hydrology , Rain , Calibration , Meteorology , Uncertainty
2.
Bioinformatics ; 29(16): 1963-9, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23772051

ABSTRACT

MOTIVATION: Converting a pyrosequencing signal into a nucleotide sequence appears highly challenging when signal intensities are low (unitary peak heights ) or when complex signals are produced by several target amplicons. In these cases, the pyrosequencing software fails to provide correct nucleotide sequences. Accordingly, the objective was to develop the AdvISER-PYRO algorithm, performing an automated, fast and reliable analysis of pyrosequencing signals that circumvents those limitations. RESULTS: In the current mycobacterial amplicon genotyping application, AdvISER-PYRO performed much better than the pyrosequencing software in the following two situations: when converting Single Amplicon Sample (SAS) signals into a correct single sequence (97.2% versus 56.5%), and when translating Multiple Amplicon Sample (MAS) signals into the correct sequence pair (74.5%). AVAILABILITY: AdvISER-PYRO is implemented in an R package (http://sites.uclouvain.be/md-ctma/index.php/softwares) and can be used in broad range of clinical applications including multiplex pyrosequencing and oncogene re-sequencing in heterogeneous tumor cell samples.


Subject(s)
Algorithms , Sequence Analysis, DNA/methods , Genotyping Techniques , Mycobacterium/genetics , Software
3.
J Biol Chem ; 286(21): 18474-82, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21482822

ABSTRACT

The plant plasma membrane H(+)-ATPase is regulated by an auto-inhibitory C-terminal domain that can be displaced by phosphorylation of the penultimate residue, a Thr, and the subsequent binding of 14-3-3 proteins. By mass spectrometric analysis of plasma membrane H(+)-ATPase isoform 2 (PMA2) isolated from Nicotiana tabacum plants and suspension cells, we identified a new phosphorylation site, Thr-889, in a region of the C-terminal domain upstream of the 14-3-3 protein binding site. This residue was mutated into aspartate or alanine, and the mutated H(+)-ATPases expressed in the yeast Saccharomyces cerevisiae. Unlike wild-type PMA2, which could replace the yeast H(+)-ATPases, the PMA2-Thr889Ala mutant did not allow yeast growth, whereas the PMA2-Thr889Asp mutant resulted in improved growth and increased H(+)-ATPase activity despite reduced phosphorylation of the PMA2 penultimate residue and reduced 14-3-3 protein binding. To determine whether the regulation taking place at Thr-889 was independent of phosphorylation of the penultimate residue and 14-3-3 protein binding, we examined the effect of combining the PMA2-Thr889Asp mutation with mutations of other residues that impair phosphorylation of the penultimate residue and/or binding of 14-3-3 proteins. The results showed that in yeast, PMA2 Thr-889 phosphorylation could activate H(+)-ATPase if PMA2 was also phosphorylated at its penultimate residue. However, binding of 14-3-3 proteins was not required, although 14-3-3 binding resulted in further activation. These results were confirmed in N. tabacum suspension cells. These data define a new H(+)-ATPase activation mechanism that can take place without 14-3-3 proteins.


Subject(s)
14-3-3 Proteins/metabolism , Cell Membrane/enzymology , Nicotiana/enzymology , Plant Proteins/metabolism , Proton-Translocating ATPases/metabolism , 14-3-3 Proteins/genetics , Amino Acid Substitution , Cell Membrane/genetics , Enzyme Activation/physiology , Mutation, Missense , Phosphorylation , Plant Proteins/genetics , Protein Structure, Tertiary , Proton-Translocating ATPases/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...