Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Manage ; 62(3): 595-607, 2018 09.
Article in English | MEDLINE | ID: mdl-29752497

ABSTRACT

Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Monitoring , Models, Theoretical , Reindeer , Alberta , Animals , Endangered Species , Forests , Geographic Information Systems , Human Activities , Humans
2.
FEMS Microbiol Lett ; 189(2): 135-41, 2000 Aug 15.
Article in English | MEDLINE | ID: mdl-10930727

ABSTRACT

The O antigen unit of Pseudomonas aeruginosa serotype O5 is a complex trisaccharide containing 2-acetamido-3-acetiminido-2, 3-dideoxy-beta-D-mannuronic acid, 2-acetimido-3-acetimido-2, 3-dideoxy-beta-D-mannuronic acid, and 2-acetimido-2, 6-deoxy-beta-D-galactosamine. Specific knockout mutations in the putative UDP-D-N-acetylglucosamine (UDP-D-GlcNAc) epimerase gene, wbpI, or the putative UDP-D-N-acetylmannosamine dehydrogenase gene, wbpA, resulted in strains that no longer produced B-band lipopolysaccharide, confirming the essential roles of these genes in B-band O antigen synthesis. Despite approximately 50% similarity of wbpI and wbpA to the Escherichia coli genes wecB (rffE) and wecC (rffD) involved in enterobacterial common antigen synthesis, cross-complementation experiments were not successful. These results imply that the P. aeruginosa UDP-D-GlcNAc precursor may be di-N-acetylated prior to further modification, preventing the E. coli enzymes from recognizing it as a substrate.


Subject(s)
Escherichia coli/genetics , Genes, Bacterial , Lipopolysaccharides , Pseudomonas aeruginosa/genetics , Gene Expression Regulation, Bacterial , O Antigens/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...