Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 378(2177): 20190225, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32684134

ABSTRACT

Analogue gravity enables the study of fields on curved space-times in the laboratory. There are numerous experimental platforms in which amplification at the event horizon or the ergoregion has been observed. Here, we demonstrate how optically generating a defect in a polariton microcavity enables the creation of one- and two-dimensional, transsonic fluid flows. We show that this highly tuneable method permits the creation of horizons. Furthermore, we present a rotating geometry akin to the water-wave bathtub vortex. These experiments usher in the possibility of observing stimulated as well as spontaneous amplification by the Hawking, Penrose and Zeld'ovich effects in fluids of light. This article is part of a discussion meeting issue 'The next generation of analogue gravity experiments'.

2.
Phys Rev Lett ; 123(21): 215301, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31809176

ABSTRACT

We investigate the formation of a new class of density-phase defects in a resonantly driven 2D quantum fluid of light. The system bistability allows the formation of low-density regions containing density-phase singularities confined between high-density regions. We show that, in 1D channels, an odd (1 or 3) or even (2 or 4) number of dark solitons form parallel to the channel axis in order to accommodate the phase constraint induced by the pumps in the barriers. These soliton molecules are typically unstable and evolve toward stationary symmetric or antisymmetric arrays of vortex streets straightforwardly observable in cw experiments. The flexibility of this photonic platform allows implementing more complicated potentials such as mazelike channels, with the vortex streets connecting the entrances and thus solving the maze.

3.
Phys Rev Lett ; 121(18): 183604, 2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30444401

ABSTRACT

Quantum fluids of light are a photonic counterpart to atomic Bose gases and are attracting increasing interest for probing many-body physics quantum phenomena such as superfluidity. Two different configurations are commonly used: the confined geometry where a nonlinear material is fixed inside an optical cavity and the propagating geometry where the propagation direction plays the role of an effective time for the system. The observation of the dispersion relation for elementary excitations in a photon fluid has proved to be a difficult task in both configurations with few experimental realizations. Here, we propose and implement a general method for measuring the excitations spectrum in a fluid of light, based on a group velocity measurement. We observe a Bogoliubov-like dispersion with a speed of sound scaling as the square root of the fluid density. This Letter demonstrates that a nonlinear system based on an atomic vapor pumped near resonance is a versatile and highly tunable platform to study quantum fluids of light.

5.
Science ; 332(6034): 1167-70, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21636766

ABSTRACT

A quantum fluid passing an obstacle behaves differently from a classical one. When the flow is slow enough, the quantum gas enters a superfluid regime, and neither whirlpools nor waves form around the obstacle. For higher flow velocities, it has been predicted that the perturbation induced by the defect gives rise to the turbulent emission of quantized vortices and to the nucleation of solitons. Using an interacting Bose gas of exciton-polaritons in a semiconductor microcavity, we report the transition from superfluidity to the hydrodynamic formation of oblique dark solitons and vortex streets in the wake of a potential barrier. The direct observation of these topological excitations provides key information on the mechanisms of superflow and shows the potential of polariton condensates for quantum turbulence studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...