Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 27(23): 235705, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27146329

ABSTRACT

The combination of complementary measurement techniques has become a frequent approach to improve scientific knowledge. Pairing of the high lateral resolution scanning force microscopy (SFM) with the spectroscopic information accessible through scanning transmission soft x-ray microscopy (STXM) permits assessing physical and chemical material properties with high spatial resolution. We present progress from the NanoXAS instrument towards using an SFM probe as an x-ray detector for STXM measurements. Just by the variation of one parameter, the SFM probe can be utilised to detect either sample photo-emitted electrons or transmitted photons. This allows the use of a single probe to detect electrons, photons and physical forces of interest. We also show recent progress and demonstrate the current limitations of using a high aspect ratio coaxial SFM probe to detect photo-emitted electrons with very high lateral resolution. Novel probe designs are proposed to further progress in using an SFM probe as a STXM detector.

2.
Phys Chem Chem Phys ; 17(42): 28387-93, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26112754

ABSTRACT

Metallic silver, copper, and Ag-Cu nanoparticles (NPs) have been produced by a chemical reduction method. The obtained nanoparticles were characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). A side-segregated configuration was observed for the one-pot synthesized Ag-Cu NPs, and the melting temperature depression of about 14 °C was found by differential scanning calorimetry (DSC). A comparison between the new experimental data, the literature data on Ag-Cu bimetallic NPs and the corresponding theoretical values obtained from the Ag-Cu nano-sized phase diagram was done, whereas the melting behaviour of Ag and Cu metal nanoparticles was discussed in the framework of the liquid layer model (LLM).

SELECTION OF CITATIONS
SEARCH DETAIL
...