Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-24730778

ABSTRACT

The translocation time of a polymer through a pore under the influence of an external field depends on a number of parameters, the most important of which are the field strength, the interaction with the pore, and the confinement entropy. Experimentally, the translocation is dominated either by the driving force (electrophoretic regime) or by the entropy of confinement or pore interaction (barrier dominated regime). In this Rapid Communication we study a simple model for polymer translocation, loosely based on the asymmetric exclusion process, which shows that it is possible to have what experimentally would be interpreted as barrier dominated, even where there is no barrier to translocation. This effective barrier is interpreted as being due to collaborative effects between the monomers forming the polymer chain.

2.
J Chem Phys ; 138(8): 084902, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23464176

ABSTRACT

We perform two-dimensional Langevin dynamics simulations of electric-field driven polymer translocation through an attractive nanopore. We investigate the effect of the location of the attractive region using different pore patterns. This is found to have an impact on both the translocation time as a function of the chain length and on the polymer entry frequency. We qualitatively compare our results to available experimental data.


Subject(s)
Models, Molecular , Motion , Polymers/chemistry , Molecular Conformation , Porosity , Probability , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...