Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Ecol Evol ; 13(1): e9693, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36687802

ABSTRACT

We surveyed tree hyrax populations living in forests, limestone rocky formations, and caves in coastal Kenya to identify the species and estimate the threat-level populations are in. Tree hyrax vocalizations were recorded in three different habitats with passive acoustic monitoring (PAM) for a total of 84 h in January and February 2022. We also observed tree hyrax behavior with thermal imaging camera and photographed individuals. Tree hyraxes in coastal Kenya are vocally active throughout the night, with most calls emitted between 23.00 and 04.00. We identified four different calls: snort, hac, hac ping-pong, and wheeze. Their calling range is between 220 and 15,000 Hz. Calls of tree hyraxes from the coast of Kenya were compared with calls stored by the Oxford Brookes University's Nocturnal Primate Research Group and identified as eastern tree hyrax, previously recorded from Tanzania. Here, we present what are, to our knowledge, the first photographs of live D. validus from Kenya. These tree hyraxes live in social groups. Due to strong pressure from humans, conservation measures are necessary to prevent the extinction of these isolated D. validus populations in Kenya.

2.
Sci Rep ; 12(1): 6331, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428748

ABSTRACT

We studied a previously almost unknown nocturnal mammal, an apparently undescribed species of tree hyrax (Dendrohyrax sp.) in the moist montane forests of Taita Hills, Kenya. We used thermal imaging to locate tree hyraxes, observe their behavior, and to identify woody plants most frequently visited by the selective browsers. We also documented acoustic behavior in forest fragments of different sizes. Data on calling type and frequency were analyzed together with lidar data to estimate population densities and to identify forest stand characteristics associated with large populations. Viable populations were found only in the largest forest fragments (> 90 ha), where tree hyraxes preferred most pristine forest stands with high, multilayered canopies. The estimated population sizes in smaller forest fragments were very limited, and hyraxes were heard to call only during late night and early morning hours, presumably in order to avoid detection. While we frequently recorded tree hyrax songs in the largest forest fragments, we almost never heard songs in the small ones. All remaining subpopulations of the Taita tree hyrax are under threat of human disturbance and further habitat deterioration. Conservation efforts should include protection of all remaining habitat patches, but also reforestation of former habitat is urgently needed.


Subject(s)
Hyraxes , Trees , Animals , Ecosystem , Forests , Humans , Kenya
3.
Article in English | MEDLINE | ID: mdl-24043357

ABSTRACT

The evolution of a particular sensory organ is often discussed with no consideration of the roles played by other senses. Here, we treat mammalian vision, olfaction and hearing as an interconnected whole, a three-dimensional sensory space, evolving in response to ecological challenges. Until now, there has been no quantitative method for estimating how much a particular animal invests in its different senses. We propose an anatomical measure based on sensory organ sizes. Dimensions of functional importance are defined and measured, and normalized in relation to animal mass. For 119 taxonomically and ecologically diverse species, we can define the position of the species in a three-dimensional sensory space. Thus, we can ask questions related to possible trade-off vs. co-operation among senses. More generally, our method allows morphologists to identify sensory organ combinations that are characteristic of particular ecological niches. After normalization for animal size, we note that arboreal mammals tend to have larger eyes and smaller noses than terrestrial mammals. On the other hand, we observe a strong correlation between eyes and ears, indicating that co-operation between vision and hearing is a general mammalian feature. For some groups of mammals we note a correlation, and possible co-operation between olfaction and whiskers.


Subject(s)
Mammals/anatomy & histology , Sense Organs/anatomy & histology , Adenosine Triphosphate/metabolism , Animals , Body Size , Ear/anatomy & histology , Ecosystem , Eye/anatomy & histology , Hearing/physiology , Mammals/physiology , Nose/anatomy & histology , Organ Size , Sense Organs/metabolism , Smell/physiology , Species Specificity , Vibrissae/anatomy & histology , Vision, Ocular/physiology
4.
Proc Biol Sci ; 272(1566): 957-62, 2005 May 07.
Article in English | MEDLINE | ID: mdl-16024352

ABSTRACT

The relation between size and performance is central for understanding the evolution of sensory systems, and much interest has been focused on mammalian eyes and ears. However, we know very little about olfactory organ size (OOS), as data for a representative set of mammals are lacking. Here, we present a cranial endocast method for estimating OOS by measuring an easily accessible part of the system, the perforated part of the ethmoid bone, through which the primary olfactory axons reach the olfactory bulb. In 16 species, for which relevant data are available, the area of the perforated ethmoid bone is directly proportional to the area of the olfactory epithelium. Thus, the ethmoid bone is a useful indicator enabling us to analyse 150 species, and describe the distribution of OOS within the class Mammalia. In the future, a method using skull material may be applied to fossil skulls. In relation to skull size, humans, apes and monkeys have small olfactory organs, while prosimians have OOSs typical for mammals of their size. Large ungulates have impressive olfactory organs. Relating anatomy to published thresholds, we find that sensitivity increases with increasing absolute organ size.


Subject(s)
Ethmoid Bone/anatomy & histology , Mammals/anatomy & histology , Olfactory Mucosa/anatomy & histology , Animals , Body Weights and Measures , Mammals/physiology , Regression Analysis , Smell/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL