Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 14(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38927030

ABSTRACT

Cow uterine infections pose a challenge in dairy farming, resulting in reproductive disorders. Uterine fluid extracellular vesicles (UF-EVs) play a key role in cell-to-cell communication in the uterus, potentially holding the signs of aetiology for endometritis. We used mass spectrometry-based quantitative shotgun proteomics to compare UF-EV proteomic profiles in healthy cows (H), cows with subclinical (SE) or clinical endometritis (CLE) sampled at 28-35 days postpartum. Functional analysis was performed on embryo cultures with the exposure to different EV types. A total of 248 UF-EV proteins exhibited differential enrichment between the groups. Interestingly, in SE, EV protein signature suggests a slight suppression of inflammatory response compared to CLE-UF-EVs, clustering closer with healthy cows' profile. Furthermore, CLE-UF-EVs proteomic profile highlighted pathways associated with cell apoptosis and active inflammation aimed at pathogen elimination. In SE-UF-EVs, the regulation of normal physiological status was aberrant, showing cell damage and endometrial repair at the same time. Serine peptidase HtrA1 (HTRA1) emerged as a potential biomarker for SE. Supplementation of CLE- and SE-derived UF-EVs reduced the embryo developmental rates and quality. Therefore, further research is warranted to elucidate the precise aetiology of SE in cattle, and HTRA1 should be further explored as a potential diagnostic biomarker.


Subject(s)
Biomarkers , Cattle Diseases , Endometritis , Extracellular Vesicles , Proteomics , Uterus , Cattle , Animals , Female , Endometritis/metabolism , Endometritis/veterinary , Endometritis/diagnosis , Endometritis/pathology , Extracellular Vesicles/metabolism , Proteomics/methods , Biomarkers/metabolism , Cattle Diseases/metabolism , Cattle Diseases/diagnosis , Uterus/metabolism , Proteome/metabolism
2.
Mol Cell Proteomics ; 22(11): 100642, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37678639

ABSTRACT

Uterine environment is tightly and finely regulated via various signaling pathways mediated through endocrine, exocrine, autocrine, juxtacrine, and paracrine mechanisms. In utero signaling processes are paramount for normal and abnormal physiology which involves cell to cell, cells to gametes, cells to embryo, and even interkingdom communications due to presence of uterine microbiota. Extracellular vesicles (EVs) in the uterine fluid (UF) and their cargo components are known to be mediators of in utero signaling and communications. Interestingly, the changes in UF-EV proteome during the bovine estrous cycle and the effects of these differentially enriched proteins on embryo development are yet to be fully discovered. In this study, shotgun quantitative proteomics-based mass spectrometry was employed to compare UF-EV proteomes at day 0, 7, and 16 of the estrous cycle to understand the estrous cycle-dependent dynamics. Furthermore, different phase UF-EVs were supplemented in embryo cultures to evaluate their impact on embryo development. One hundred fifty-nine UF-EV proteins were differentially enriched at different time points indicating the UF-EV proteome is cycle-dependent. Overall, many identified pathways are important for normal uterine functions, early embryo development, and its nutritional needs, such as antioxidant activity, cell morphology and cycle, cellular homeostasis, cell adhesion, and carbohydrate metabolic process. Furthermore, the luteal phase UF-EVs supplementation increased in vitro blastocyst rates from 25.0 ± 5.9% to 41.0 ± 4.0% (p ≤ 0.05). Our findings highlight the importance of bovine UF-EV in uterine communications throughout the estrous cycle. Interestingly, comparison of hormone-synchronized EV proteomes to natural cycle UF-EVs indicated shift of signaling. Finally, UF-EVs can be used to improve embryo production in vitro.


Subject(s)
Extracellular Vesicles , Proteome , Female , Animals , Cattle , Proteome/metabolism , Uterus , Estrous Cycle/metabolism , Embryonic Development , Extracellular Vesicles/metabolism
3.
Vet Res Commun ; 47(2): 885-900, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36547796

ABSTRACT

Extracellular vesicles (EV) have been identified in uterine fluid (UF), however the bovine UF-EV profile during different phases of the oestrous cycle has not yet been established. Therefore, we compared the UF-EV, and their protein profile at follicular and luteal phases of the oestrous cycle. UF samples were collected from healthy uteri of six live and six slaughtered cows at follicular or luteal phases. Isolation of EV was performed using tangential flow filtration followed by size exclusion chromatography. EV were characterized by nanoparticle tracking analysis (NTA), fluorescence NTA, zeta potential, and transmission electron microscopy. Mass-spectrometry was used to evaluate EV protein profile from live cows. Particle concentrations (mean ± SD) were higher (P < 0.05) at follicular than at luteal phase in both live (1.01 × 108 ± 1.66 × 107 vs 7.56 × 107 ± 1.80 × 107, respectively) and slaughtered cows (1.17 × 108 ± 2.34 × 107 vs 9.12 × 107 ± 9.77 × 106, respectively). The proportion of fluorescently labelled EV varied significantly between follicular and luteal phases across live (28.9 ± 1.9% vs 19.3 ± 2.8%, respectively) and slaughtered cows (26.5 ± 6.3% vs 27.3 ± 2 .7%, respectively). In total, 41 EV proteins were differentially expressed between the phases. Some of the proteins were involved in reproductive processes, cell adhesion and proliferation, and cellular metabolic processes. The results indicated differences in bovine UF-EV concentration and protein profile at follicular and luteal phases, which would suggest that EV modulate uterine microenvironment across the oestrous cycle. Further research is needed to understand the effect of EV changes throughout the oestrous cycle.


Subject(s)
Estrous Cycle , Luteal Phase , Female , Cattle , Animals , Estrous Cycle/metabolism , Luteal Phase/metabolism , Proteomics , Uterus
4.
Reprod Biol ; 22(2): 100645, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35594727

ABSTRACT

Extracellular vesicles (EVs) are small, nanometre sized, membrane-enclosed structures released by cells and are thought to be crucial in cellular communication. The cargo of these vesicles includes lipids, proteins, RNAs and DNA, and control various biological processes in their target tissues depending on the parental and receiver cell's origin and phenotype. Recently data has accumulated in the role of EVs in embryo implantation and pregnancy, with EVs identified in the uterine cavity of women, sheep, cows, horses, and mice, in which they aid blastocyst and endometrial preparation for implantation. Herein is a critical review to decipher the role of extracellular vesicles in endometrial receptivity and their potential in reproductive therapies and diagnosis. The current knowledge of the function of embryo and endometrial derived EVs and their cargoes, with regards to their effect on implantation and receptivity are summarized and evaluated. The findings of the below review highlight that the combined knowledge on EVs deriving from the endometrium and embryo have the potential to be translated to various clinical applications including treatment, a diagnostic biomarker for diseases and a drug delivery tool to ultimately improve pregnancy rates.


Subject(s)
Endometrium , Extracellular Vesicles , Animals , Cattle , Embryo Implantation , Embryo, Mammalian/metabolism , Endometrium/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Female , Horses , Humans , Mice , Pregnancy , Sheep , Uterus
SELECTION OF CITATIONS
SEARCH DETAIL
...