Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Br J Clin Pharmacol ; 89(7): 2179-2189, 2023 07.
Article in English | MEDLINE | ID: mdl-36764326

ABSTRACT

AIMS: The aim of this study is to examine whether colchicine improves ß adrenoceptor-mediated vasodilation in humans by conducting a double-blinded, placebo-controlled intervention study. Colchicine treatment has known beneficial effects on cardiovascular health and reduces the incidence of cardiovascular disease. Studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation, but this has not been determined in humans. METHODS: Middle-aged men with essential hypertension were randomly assigned firstly to acute treatment with either 0.5 mg colchicine (n = 19) or placebo (n = 12). They were subsequently re-randomized for 3 weeks of treatment with either colchicine 0.5 mg twice daily (n = 16) or placebo (n = 15) followed by a washout period of 48-72 h. The vasodilator responses to isoprenaline, acetylcholine and sodium nitroprusside were determined as well as arterial pressure, arterial compliance and plasma inflammatory markers. RESULTS: Acute colchicine treatment increased isoprenaline (by 38% for the highest dose) as well as sodium nitroprusside (by 29% main effect) -induced vasodilation but had no effect on the response to acetylcholine. The 3-week colchicine treatment followed by a washout period did not induce an accumulated or sustained effect on the ß adrenoceptor response, and there was no effect on arterial pressure, arterial compliance or the level of measured inflammatory markers. CONCLUSION: Colchicine acutely enhances ß adrenoceptor- and nitric oxide-mediated changes in vascular conductance in humans, supporting that the mechanism previously demonstrated in rodents, translates to humans. The results provide novel translational evidence for a transient enhancing effect of colchicine on ß adrenoceptor-mediated vasodilation in humans with essential hypertension. CONDENSED ABSTRACT: Preclinical studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation. Here we show that this effect of colchicine can be translated to humans. Acute colchicine treatment was found to increase both isoprenaline- and sodium nitroprusside-induced vasodilation. The study provides the first translational evidence for a transient ß adrenoceptor-mediated vasodilatory effect of colchicine in humans. The finding of an acute effect suggests that it may be clinically important to maintain an adequate bioavailability of colchicine.


Subject(s)
Acetylcholine , Vasodilation , Male , Middle Aged , Humans , Nitroprusside/pharmacology , Isoproterenol/pharmacology , Acetylcholine/pharmacology , Colchicine/pharmacology , Essential Hypertension , Receptors, Adrenergic
2.
Med Sci Sports Exerc ; 53(9): 1797-1806, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33787530

ABSTRACT

PURPOSE: Skeletal muscle vascularization is important for tissue regeneration after injury and immobilization. We examined whether complete immobilization influences capillarization and oxygen delivery to the muscle and assessed the efficacy of rehabilitation by aerobic exercise training. METHODS: Young healthy males had one leg immobilized for 14 d and subsequently completed 4 wk of intense aerobic exercise training. Biopsies were obtained from musculus vastus lateralis, and arteriovenous blood sampling for assessment of oxygen extraction and leg blood flow during exercise was done before and after immobilization and training. Muscle capillarization, muscle and platelet content of vascular endothelial growth factor (VEGF), and muscle thrombospondin-1 were determined. RESULTS: Immobilization did not have a significant impact on capillary per fiber ratio or capillary density. The content of VEGF protein in muscle samples was reduced by 36% (P = 0.024), and VEGF to thrombospondin-1 ratio was 94% lower (P = 0.046). The subsequent 4-wk training period increased the muscle VEGF content and normalized the muscle VEGF to thrombospondin-1 ratio but did not influence capillarization. Platelet VEGF content followed the trend of muscle VEGF. At the functional level, oxygen extraction, blood flow, and oxygen delivery at rest and during submaximal exercise were not affected by immobilization or training. CONCLUSIONS: The results demonstrate that just 2 wk of leg immobilization leads to a strongly reduced angiogenic potential as evidenced by reduced muscle and platelet VEGF content and a reduced muscle VEGF to thrombospondin-1 ratio. Moreover, a subsequent period of intensive aerobic exercise training fails to increase capillarization in the previously immobilized leg, possibly because of the angiostatic condition caused by immobilization.


Subject(s)
Angiogenic Proteins/metabolism , Exercise/physiology , Immobilization/methods , Lower Extremity/physiology , Muscle, Skeletal/physiology , Neovascularization, Physiologic/physiology , Capillaries/physiology , Healthy Volunteers , Humans , Male , Oxygen Consumption/physiology , Thrombospondin 1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Young Adult
3.
J Am Heart Assoc ; 9(15): e016017, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32750305

ABSTRACT

BACKGROUND The mechanisms underlying the effect of preconditioning on remote microvasculature remains undisclosed. The primary objective was to document the remote effect of ischemic preconditioning on microvascular function in humans. The secondary objective was to test if exercise also induces remote microvascular effects. METHODS AND RESULTS A total of 12 healthy young men and women participated in 2 experimental days in a random counterbalanced order. On one day the participants underwent 4×5 minutes of forearm ischemic preconditioning, and on the other day they completed 4×5 minutes of hand-grip exercise. On both days, catheters were placed in the brachial and femoral artery and vein for infusion of acetylcholine, sodium nitroprusside, and epoprostenol. Vascular conductance was calculated from blood flow measurements with ultrasound Doppler and arterial and venous blood pressures. Ischemic preconditioning enhanced (P<0.05) the remote vasodilator response to intra-arterial acetylcholine in the leg at 5 and 90 minutes after application. The enhanced response was associated with a 6-fold increase (P<0.05) in femoral venous plasma prostacyclin levels and with a transient increase (P<0.05) in arterial plasma levels of brain-derived neurotrophic factor and vascular endothelial growth factor. In contrast, hand-grip exercise did not influence remote microvascular function. CONCLUSIONS These findings demonstrate that ischemic preconditioning of the forearm improves remote microvascular endothelial function and suggest that one of the underlying mechanisms is a humoral-mediated potentiation of prostacyclin formation.


Subject(s)
Endothelium, Vascular/physiology , Epoprostenol/metabolism , Ischemic Preconditioning , Microvessels/physiology , Blood Circulation/physiology , Blood Pressure/physiology , Brachial Artery/metabolism , Brachial Artery/physiology , Endothelium, Vascular/metabolism , Exercise/physiology , Female , Femoral Artery/metabolism , Femoral Artery/physiology , Femoral Vein/metabolism , Femoral Vein/physiology , Humans , Male , Microvessels/metabolism , Young Adult
4.
Med Sci Sports Exerc ; 52(10): 2107-2116, 2020 10.
Article in English | MEDLINE | ID: mdl-32496738

ABSTRACT

PURPOSE: We examined whether 2 wk of one-leg immobilization would impair leg microvascular function and to what extent a subsequent period of intense aerobic cycle training could restore function. METHODS: Study participants were healthy young men (n = 12; 20-24 yr of age). Leg microvascular function was determined before the intervention, after the immobilization period, and after a 4-wk exercise training period. Microvascular function was assessed as the vasodilator response to intra-arterial infusion of acetylcholine and sodium nitroprusside and as the vasoconstrictor response to endogenous noradrenaline release induced by tyramine infusion. Vasodilator enzymes as well as prooxidant and antioxidant enzymes were assessed by protein analysis in skeletal muscle samples: endothelial nitric oxide synthase, NADPH oxidase (NOX p67 and NOX gp91), and superoxide dismutase 2 (SOD2). RESULTS: The acetylcholine-induced change in vascular conductance was reduced after the 2 wk of immobilization (P = 0.003), tended to increase (P = 0.061), and was back to baseline levels after the subsequent 4 wk of exercise training. Plasma prostacyclin levels in response to acetylcholine infusion were lower after immobilization than before (P = 0.041). The changes in vascular conductance with sodium nitroprusside and tyramine were similar during all conditions. Skeletal muscle protein levels of endothelial nitric oxide synthase in the experimental leg were unchanged with immobilization and subsequent training but increased 47% in the control leg with training (P = 0.002). NOX p67, NOX gp91, and SOD2 in the experimental leg remained unaltered with immobilization, and SOD2 was higher than preimmobilization after 4 wk of training (P < 0.001). CONCLUSIONS: The study shows that 2 wk of immobilization impairs leg microvascular endothelial function and prostacyclin formation but that 4 wk of intense aerobic exercise training restores the function. The underlying mechanism may reside in the prostacyclin system.


Subject(s)
Endothelium, Vascular/physiology , Immobilization/adverse effects , Leg/blood supply , Microcirculation/physiology , Muscle, Smooth, Vascular/physiology , Physical Conditioning, Human/physiology , 6-Ketoprostaglandin F1 alpha/blood , Epoprostenol/blood , Humans , Male , Muscle Proteins/metabolism , Norepinephrine/blood , Regional Blood Flow , Time Factors , Vasoconstriction/physiology , Vasodilation/physiology , Young Adult
5.
Am J Physiol Regul Integr Comp Physiol ; 315(2): R274-R283, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29668326

ABSTRACT

Aging is associated with slower skeletal muscle O2 uptake (V̇o2) kinetics; however, the mechanisms underlying this effect of age are unclear. Also, the effects of exercise training in elderly on the initial vascular and metabolic response to exercise remain to be elucidated. We measured leg hemodynamics and oxidative metabolism in the transition from rest to steady-state exercise engaging the knee-extensor muscles in young ( n = 15, 25 ± 1 yr) and older ( n = 15, 72 ± 1 yr) subjects before and after a period of aerobic high-intensity exercise training. To enhance cGMP signaling, pharmacological inhibition of phosphodiesterase 5 (PDE5) was performed. Before training, the older group had a slower ( P <0.05) increase in femoral arterial blood flow and leg vascular conductance in the transition from rest to steady-state exercise at low- and moderate-intensity compared with the young group. The rate of increase in leg V̇o2 was, however, similar in the two groups as a result of higher ( P < 0.05) arteriovenous O2 difference in the older group. Potentiation of cGMP signaling did not affect the rate of increase in blood flow or V̇o2 in either group. Exercise training augmented ( P < 0.05) the increase in leg vascular conductance and blood flow during the onset of moderate-intensity exercise in both groups without altering V̇o2. These findings suggest that an age-related reduction in the initial vascular response to low- and moderate-intensity knee-extensor exercise is not limiting for V̇o2 in older individuals. A lower blood flow response in aging does not appear to be a result of reduced cGMP signaling.


Subject(s)
Aging/blood , Cyclic GMP/metabolism , Energy Metabolism , Exercise/physiology , Hemodynamics , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Oxygen/blood , Second Messenger Systems , Adaptation, Physiological , Adult , Age Factors , Aged , Energy Metabolism/drug effects , Hemodynamics/drug effects , Humans , Lower Extremity , Male , Muscle Contraction , Oxidation-Reduction , Oxygen Consumption , Phosphodiesterase 5 Inhibitors/pharmacology , Regional Blood Flow , Second Messenger Systems/drug effects , Sildenafil Citrate/pharmacology , Young Adult
6.
Front Physiol ; 9: 1807, 2018.
Article in English | MEDLINE | ID: mdl-30618819

ABSTRACT

Aim: The aim was to determine the role of aging and exercise training on endothelial mechanosensor proteins and the hyperemic response to shear stress by passive leg movement. Methods: We examined the expression of mechanosensor proteins and vascular function in young (n = 14, 25 ± 3 years) and old (n = 14, 72 ± 5 years) healthy male subjects with eight weeks of aerobic exercise training. Before and after training, the hyperaemic response to passive leg movement was determined and a thigh muscle biopsy was obtained before and after passive leg movement to assess the acute effect of increased shear stress. Biopsies were analyzed for protein amount and phosphorylation of mechanosensor proteins; Platelet endothelial cell adhesion molecule-1 (PECAM-1), Vascular endothelial cadherin, Vascular endothelial growth factor receptor-2 and endothelial nitric oxide synthase (eNOS). Results: Before training, the old group presented a lower hyperaemic response to passive leg movement and a 35% lower (P < 0.05) relative basal phosphorylation level of PECAM-1 whereas there was no difference for the other mechanosensor proteins. After training, the eNOS protein amount, the amount of PECAM-1 protein and the passive leg movement-induced phosphorylation of PECAM-1 were higher in both groups. The hyperaemic response to passive leg movement was higher after training in the young group only. Conclusion: Aged individuals have a lower hyperaemic response to passive leg movement and a lower relative basal phosphorylation of PECAM-1 than young. The higher PECAM-1 phosphorylation despite a similar hyperemic level in the aged observed after training, suggests that training improved shear stress responsiveness of this mechanotransduction protein.

7.
J Appl Physiol (1985) ; 124(1): 109-117, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28982945

ABSTRACT

Physical activity has the potential to offset age-related impairments in the regulation of blood flow and O2 delivery to the exercising muscles; however, the mechanisms underlying this effect of physical activity remain poorly understood. The present study examined the role of cGMP in training-induced adaptations in the regulation of skeletal muscle blood flow and oxidative metabolism during exercise in aging humans. We measured leg hemodynamics and oxidative metabolism during exercise engaging the knee extensor muscles in young [ n = 15, 25 ± 1 (SE) yr] and older ( n = 15, 72 ± 1 yr) subjects before and after a period of aerobic high-intensity exercise training. To determine the role of cGMP signaling, pharmacological inhibition of phosphodiesterase 5 (PDE5) was performed. Before training, inhibition of PDE5 increased ( P < 0.05) skeletal muscle blood flow and O2 uptake during moderate-intensity exercise in the older group; however, these effects of PDE5 inhibition were not detected after training. These findings suggest a role for enhanced cGMP signaling in the training-induced improvement of regulation of blood flow in contracting skeletal muscle of older men. NEW & NOTEWORTHY The present study provides evidence for enhanced cyclic GMP signaling playing an essential role in the improved regulation of blood flow in contracting skeletal muscle of older men with aerobic exercise training.


Subject(s)
Cyclic GMP/physiology , Exercise/physiology , Muscle, Skeletal/blood supply , Adaptation, Physiological , Adult , Age Factors , Aged , Humans , Male , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Young Adult
8.
Hypertension ; 71(1): 151-159, 2018 01.
Article in English | MEDLINE | ID: mdl-29084879

ABSTRACT

Coordination of vascular smooth muscle cell tone in resistance arteries plays an essential role in the regulation of peripheral resistance and overall blood pressure. Recent observations in animals have provided evidence for a coupling between adrenoceptors and Panx1 (pannexin-1) channels in the regulation of sympathetic nervous control of peripheral vascular resistance and blood pressure; however, evidence for a functional coupling in humans is lacking. We determined Panx1 expression and effects of treatment with the pharmacological Panx1 channel inhibitor probenecid on the vasoconstrictor response to α1- and α2-adrenergic receptor stimulation in the human forearm and leg vasculature of young healthy male subjects (23±3 years). By use of immunolabeling and confocal microscopy, Panx1 channels were found to be expressed in vascular smooth muscle cells of arterioles in human leg skeletal muscle. Probenecid treatment increased (P<0.05) leg vascular conductance at baseline by ≈15% and attenuated (P<0.05) the leg vasoconstrictor response to arterial infusion of tyramine (α1- and α2-adrenergic receptor stimulation) by ≈15%, whereas the response to the α1-agonist phenylephrine was unchanged. Inhibition of α1-adrenoceptors prevented the probenecid-induced increase in baseline leg vascular conductance, but did not alter the effect of probenecid on the vascular response to tyramine. No differences with probenecid treatment were detected in the forearm. These observations provide the first line of evidence in humans for a functional role of Panx1 channels in setting resting tone via α1-adrenoceptors and in the constrictive effect of noradrenaline via α2-adrenoceptors, thereby contributing to the regulation of peripheral vascular resistance and blood pressure in humans.


Subject(s)
Arteries , Blood Pressure , Connexins , Extremities/blood supply , Muscle, Smooth, Vascular , Nerve Tissue Proteins , Receptors, Adrenergic , Sympathetic Nervous System , Vasoconstriction , Adrenergic Uptake Inhibitors/pharmacology , Adult , Arteries/drug effects , Arteries/pathology , Blood Pressure/drug effects , Blood Pressure/physiology , Connexins/antagonists & inhibitors , Connexins/metabolism , Humans , Male , Muscle, Smooth, Vascular/innervation , Muscle, Smooth, Vascular/physiology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Probenecid/pharmacology , Receptors, Adrenergic/classification , Receptors, Adrenergic/metabolism , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Tyramine/pharmacology , Vascular Resistance/drug effects , Vascular Resistance/physiology , Vasoconstriction/drug effects , Vasoconstriction/physiology , Vasoconstrictor Agents/pharmacology
9.
Med Sci Sports Exerc ; 49(1): 96-105, 2017 01.
Article in English | MEDLINE | ID: mdl-27992397

ABSTRACT

INTRODUCTION: The purposes of the present study was to examine the effect of intermittent exercise training on musculoskeletal and metabolic health in postmenopausal (PM) and premenopausal (PRM) women and, furthermore, to evaluate whether the adaptations can be maintained with a reduced training frequency. METHODS: Eighteen PM (51 ± 1 yr, mean ± SEM) and 12 PRM (48 ± 1 yr) women participated in floorball training approximately two times per week for 12 wk. In a subgroup (n = 9) of PM women (PM40), exercise training was performed for an additional 40 wk with a reduced training frequency of approximately one training session per week. RESULTS: In PM, the body fat percentage decreased (P < 0.05) and the total lean leg mass increased (P < 0.05) during the 12-wk training period, with no changes in PRM. In both PM and PRM, lean body mass and maximal oxygen uptake (V˙O2max) were higher, and Yo-Yo intermittent endurance test 1 (YYIET-1) performance was better (P < 0.05) after the 12-wk training period. Procollagen type 1 amino-terminal propeptide was higher (P < 0.05) in PM, and total leg bone mineral density (BMD) was higher (P < 0.05) in both PM and PRM after the 12-wk training period. In PM40, total lean leg mass, V˙O2max, YYIET-1 performance, level of procollagen type 1 amino-terminal propeptide, and total leg BMD were maintained, whereas whole-body BMD and glycated hemoglobin (HbA1c) were reduced (P < 0.05) and the expression of muscle glucose transporter type 4 was higher (P < 0.05). CONCLUSION: Twelve weeks of intermittent exercise training increased BMD, intermittent exercise capacity, and V˙O2max in PM and PRM, with PM also having positive changes in body composition. Additional 40 wk of training with a reduced frequency was sufficient to preserve these physiological adaptations and also improve blood glucose regulation in PM.


Subject(s)
Adaptation, Physiological , Exercise/physiology , Physical Conditioning, Human/methods , Postmenopause/physiology , Premenopause/physiology , Actins/metabolism , Blood Glucose/metabolism , Body Composition/physiology , Body Fat Distribution , Bone Density , Female , Glucose Transporter Type 4/metabolism , Heart Rate/physiology , Humans , Middle Aged , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology , TOR Serine-Threonine Kinases/metabolism , Time Factors
10.
Med Sci Sports Exerc ; 48(7): 1355-64, 2016 07.
Article in English | MEDLINE | ID: mdl-26885636

ABSTRACT

PURPOSE: The present study examined whether a period of additional speed endurance training would improve intense intermittent exercise performance in highly trained soccer players during the season and whether the training changed aerobic metabolism and the level of oxidative enzymes in type I and type II muscle fibers. METHODS: During the last 9 wk of the season, 13 semiprofessional soccer players performed additional speed endurance training sessions consisting of two to three sets of 8-10 repetitions of 30-m sprints with 10 s of passive recovery (SET). Before and after SET, subjects completed a double-step exercise protocol that included transitions from standing to moderate-intensity running (~75% HRmax), followed by transitions from moderate- to high-intensity running (~90% HRmax) in which pulmonary oxygen uptake (V˙O2) was determined. In addition, the yo-yo intermittent recovery test level 1 was performed, and a muscle biopsy was obtained at rest. RESULTS: The yo-yo intermittent recovery test level 1 performance was 11.6% ± 6.4% (mean ± SD) better (2803 ± 330 vs 3127 ± 383 m, P < 0.05) after SET compared with before SET. In the transition from standing to moderate-intensity running, phase II pulmonary V˙O2 kinetics was 11.4% ± 16.5% faster (P < 0.05), and the running economy at this intensity was 2.3% ± 3.0% better (P < 0.05). These improvements were apparent despite the content of muscle proteins regulating oxidative metabolism (3-hydroxyacyl CoA dehydrogenase, COX IV, and OXPHOS), and capillarization was reduced (P < 0.05). The content of 3-hydroxyacyl CoA dehydrogenase and citrate synthase in type I and type II fibers did not change. CONCLUSION: In highly trained soccer players, additional speed endurance training is associated with an improved ability to perform repeated high-intensity work. To what extent the training-induced changes in V˙O2 kinetics and mechanical efficiency in type I fibers caused the improvement in performance warrants further investigation.


Subject(s)
Adaptation, Physiological , Athletic Performance/physiology , Physical Conditioning, Human/methods , Physical Endurance , Soccer/physiology , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Adult , Athletes , Exercise Test , Humans , Male , Muscle Proteins/metabolism , Muscle, Skeletal/physiology , Oxygen Consumption , Running/physiology , Young Adult
11.
Am J Physiol Heart Circ Physiol ; 309(11): H1867-75, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26432842

ABSTRACT

Aging is associated with an altered regulation of blood flow to contracting skeletal muscle; however, the precise mechanisms remain unclear. We recently demonstrated that inhibition of cGMP-binding phosphodiesterase 5 (PDE5) increased blood flow to contracting skeletal muscle of older but not young human subjects. Here we examined whether this effect of PDE5 inhibition was related to an improved ability to blunt α-adrenergic vasoconstriction (functional sympatholysis) and/or improved efficacy of local vasodilator pathways. A group of young (23 ± 1 yr) and a group of older (72 ± 1 yr) male subjects performed knee-extensor exercise in a control setting and following intake of the highly selective PDE5 inhibitor sildenafil. During both conditions, exercise was performed without and with arterial tyramine infusion to evoke endogenous norepinephrine release and consequently stimulation of α1- and α2-adrenergic receptors. The level of the sympatholytic compound ATP was measured in venous plasma by use of the microdialysis technique. Sildenafil increased (P < 0.05) vascular conductance during exercise in the older group, but tyramine infusion reduced (P < 0.05) this effect by 38 ± 9%. Similarly, tyramine reduced (P < 0.05) the vasodilation induced by arterial infusion of a nitric oxide (NO) donor by 54 ± 9% in the older group, and this effect was not altered by sildenafil. Venous plasma [ATP] did not change with PDE5 inhibition in the older subjects during exercise. Collectively, PDE5 inhibition in older humans was not associated with an improved ability for functional sympatholysis. An improved efficacy of the NO system may be one mechanism underlying the effect of PDE5 inhibition on exercise hyperemia in aging.


Subject(s)
Aging/metabolism , Blood Vessels/drug effects , Muscle Contraction , Muscle, Skeletal/blood supply , Phosphodiesterase 5 Inhibitors/administration & dosage , Sildenafil Citrate/administration & dosage , Sympathetic Nervous System/drug effects , Sympathomimetics/administration & dosage , Tyramine/administration & dosage , Vasoconstriction/drug effects , Vasodilation/drug effects , Adenosine Triphosphate/blood , Age Factors , Aged , Blood Flow Velocity , Blood Vessels/innervation , Blood Vessels/metabolism , Humans , Hyperemia/metabolism , Hyperemia/physiopathology , Infusions, Intra-Arterial , Male , Microdialysis , Muscle, Skeletal/metabolism , Nitric Oxide Donors/administration & dosage , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Regional Blood Flow , Sympathetic Nervous System/metabolism , Young Adult
12.
Physiol Rep ; 3(8)2015 Aug.
Article in English | MEDLINE | ID: mdl-26272735

ABSTRACT

Aging is associated with progressive loss of cardiovascular and skeletal muscle function. The impairment in physical capacity with advancing age could be related to an insufficient peripheral O2 delivery to the exercising muscles. Furthermore, the mechanisms underlying an impaired blood flow regulation remain unresolved. Cyclic guanosine monophosphate (cGMP) is one of the main second messengers that mediate smooth muscle vasodilation and alterations in cGMP signaling could, therefore, be one mechanism by which skeletal muscle perfusion is impaired with advancing age. The current study aimed to evaluate the effect of inhibiting the main enzyme involved in cGMP degradation, phosphodiesterase 5 (PDE5), on blood flow and O2 delivery in contracting skeletal muscle of young and older humans. A group of young (23 ± 1 years) and a group of older (72 ± 2 years) male human subjects performed submaximal knee-extensor exercise in a control setting and following intake of the highly selective PDE5 inhibitor sildenafil. Sildenafil increased leg O2 delivery (6-9%) and leg O2 uptake (10-12%) at all three exercise intensities in older but not young subjects. The increase in leg O2 delivery with sildenafil in the older subjects correlated with the increase in leg O2 uptake (r (2) = 0.843). These findings suggest an insufficient O2 delivery to the contracting skeletal muscle of aged individuals and that reduced cGMP availability is a novel mechanism underlying impaired skeletal muscle perfusion with advancing age.

SELECTION OF CITATIONS
SEARCH DETAIL
...