Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 11(22): 15995-16005, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34824806

ABSTRACT

Although insect herbivores are known to evolve resistance to insecticides through multiple genetic mechanisms, resistance in individual species has been assumed to follow the same mechanism. While both mutations in the target site insensitivity and increased amplification are known to contribute to insecticide resistance, little is known about the degree to which geographic populations of the same species differ at the target site in a response to insecticides. We tested structural (e.g., mutation profiles) and regulatory (e.g., the gene expression of Ldace1 and Ldace2, AChE activity) differences between two populations (Vermont, USA and Belchow, Poland) of the Colorado potato beetle, Leptinotarsa decemlineata in their resistance to two commonly used groups of insecticides, organophosphates, and carbamates. We established that Vermont beetles were more resistant to azinphos-methyl and carbaryl insecticides than Belchow beetles, despite a similar frequency of resistance-associated alleles (i.e., S291G) in the Ldace2 gene. However, the Vermont population had two additional amino acid replacements (G192S and F402Y) in the Ldace1 gene, which were absent in the Belchow population. Moreover, the Vermont population showed higher expression of Ldace1 and was less sensitive to AChE inhibition by azinphos-methyl oxon than the Belchow population. Therefore, the two populations have evolved different genetic mechanisms to adapt to organophosphate and carbamate insecticides.

2.
Sci Rep ; 9(1): 11320, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31383885

ABSTRACT

Stress tolerance and adaptation to stress are known to facilitate species invasions. Many invasive species are also pests and insecticides are used to control them, which could shape their overall tolerance to stress. It is well-known that heavy insecticide usage leads to selection of resistant genotypes but less is known about potential effects of mild sublethal insecticide usage. We studied whether stressful, sublethal pyrethroid insecticide exposure has within-generational and/or maternal transgenerational effects on fitness-related traits in the Colorado potato beetle (Leptinotarsa decemlineata) and whether maternal insecticide exposure affects insecticide tolerance of offspring. Sublethal insecticide stress exposure had positive within-and transgenerational effects. Insecticide-stressed larvae had higher adult survival and higher adult body mass than those not exposed to stress. Furthermore, offspring whose mothers were exposed to insecticide stress had higher larval and pupal survival and were heavier as adults (only females) than those descending from control mothers. Maternal insecticide stress did not explain differences in lipid content of the offspring. To conclude, stressful insecticide exposure has positive transgenerational fitness effects in the offspring. Therefore, unsuccessful insecticide control of invasive pest species may lead to undesired side effects since survival and higher body mass are known to facilitate population growth and invasion success.


Subject(s)
Coleoptera/drug effects , Insecticides/toxicity , Pyrethrins/toxicity , Animals , Coleoptera/physiology , Female , Insecticide Resistance , Introduced Species , Larva/drug effects , Larva/physiology , Male
3.
Proc Biol Sci ; 283(1828)2016 04 13.
Article in English | MEDLINE | ID: mdl-27053744

ABSTRACT

Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees.


Subject(s)
Bees/drug effects , Guanidines/toxicity , Insecticides/toxicity , Thiazoles/toxicity , Animals , Bees/parasitology , Bees/physiology , Learning/drug effects , Neonicotinoids , Nosema/physiology , Risk Assessment , Smell/drug effects , Species Specificity
4.
PeerJ ; 4: e1808, 2016.
Article in English | MEDLINE | ID: mdl-27014515

ABSTRACT

In recent years, many pollinators have declined in abundance and diversity worldwide, presenting a potential threat to agricultural productivity, biodiversity and the functioning of natural ecosystems. One of the most debated factors proposed to be contributing to pollinator declines is exposure to pesticides, particularly neonicotinoids, a widely used class of systemic insecticide. Also, newly emerging parasites and diseases, thought to be spread via contact with managed honeybees, may pose threats to other pollinators such as bumblebees. Compared to honeybees, bumblebees could be particularly vulnerable to the effects of stressors due to their smaller and more short-lived colonies. Here, we studied the effect of field-realistic, chronic clothianidin exposure and inoculation with the parasite Nosema ceranae on survival, fecundity, sugar water collection and learning using queenless Bombus terrestris audax microcolonies in the laboratory. Chronic exposure to 1 ppb clothianidin had no significant effects on the traits studied. Interestingly, pesticide exposure in combination with additional stress caused by harnessing bees for Proboscis Extension Response (PER) learning assays, led to an increase in mortality. In contrast to previous findings, the bees did not become infected by N. ceranae after experimental inoculation with the parasite spores, suggesting variability in host resistance or parasite virulence. However, this treatment induced a slight, short-term reduction in sugar water collection, potentially through stimulation of the immune system of the bees. Our results suggest that chronic exposure to 1 ppb clothianidin does not have adverse effects on bumblebee fecundity or learning ability.

5.
Front Zool ; 12: 20, 2015.
Article in English | MEDLINE | ID: mdl-26366187

ABSTRACT

INTRODUCTION: It has been suggested that rapid range expansion could proceed through evolution in the endocrinological machinery controlling life-history switches. Based on this we tested whether the Colorado potato beetle, Leptinotarsa decemlineata, which has rapidly expanded its range across latitudinal regions in Europe, and shows photoperiodic adaptation in overwintering initiation, has different sensitivities to juvenile hormone (JH) manipulation along a latitudinal gradient. RESULTS: A factorial experiment where beetles were reared either under a long or short day photoperiod was performed. Hormone levels were manipulated by topical applications. An allatostatin mimic, H17, was used to decrease and a juvenile hormone III analogue, pyriproxyfen, was used to increase the hormone levels. The effects of photoperiod and hormone manipulations on fecundity and overwintering related burrowing were monitored. Application of H17 decreased fecundity but did not induce overwintering related burrowing. Manipulation with pyriproxyfen increased fecundity and delayed burrowing. While small population-dependent differences in responsiveness to the topical application treatments were observed in fecundity, none were seen in overwintering related burrowing. CONCLUSIONS: The results indicate that the rapid photoperiodic adaptation manifested in several life-history and physiological traits in L. decemlineata in Europe is unlikely a result of population dependent differences in JH III sensitivity. While other endocrine factors cannot be ruled out, more likely mechanisms could be genetic changes in upstream elements, such as the photoperiodic clock or the insulin signaling pathway.

6.
Oecologia ; 176(1): 57-68, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25012598

ABSTRACT

Photoperiodic phenological adaptations are prevalent in many organisms living in seasonal environments. As both photoperiod and growth season length change with latitude, species undergoing latitudinal range expansion often need to synchronize their life cycle with a changing photoperiod and growth season length. Since adaptive synchronization often involves a large number of time-consuming genetic changes, behavioural plasticity might be a faster way to adjust to novel conditions. We compared behavioural and physiological traits in overwintering (diapause) preparation in three latitudinally different European Colorado potato beetle (Leptinotarsa decemlineata) populations reared under two photoperiods. Our aim was to study whether behavioural plasticity could play a role in rapid range expansion into seasonal environments. Our results show that while burrowing into the soil occurred in the southernmost studied population also under a non-diapause-inducing long photoperiod, the storage lipid content of these beetles was very low compared to the northern populations. However, similar behavioural plasticity was not found in the northern populations. Furthermore, the strongest suppression of energy metabolism was seen in pre-diapause beetles from the northernmost population. These results could indicate accelerated diapause preparation and possibly energetic adjustments due to temporal constraints imposed by a shorter, northern, growth season. Our results indicate that behavioural plasticity in burrowing may have facilitated initial range expansion of L. decemlineata in Europe. However, long-term persistence at high latitudes has required synchronization of burrowing behaviour with physiological traits. The results underline that eco-physiological life-history traits of insects, such as diapause, should be included in studies on range expansion.


Subject(s)
Acclimatization/physiology , Animal Distribution , Behavior, Animal/physiology , Coleoptera/physiology , Introduced Species , Photoperiod , Seasons , Animals , Diapause, Insect/physiology , Environment , Europe , Linear Models
7.
PLoS One ; 9(1): e86012, 2014.
Article in English | MEDLINE | ID: mdl-24465841

ABSTRACT

BACKGROUND: The Colorado potato beetle (Leptinotarsa decemlineata) is a major pest and a serious threat to potato cultivation throughout the northern hemisphere. Despite its high importance for invasion biology, phenology and pest management, little is known about L. decemlineata from a genomic perspective. We subjected European L. decemlineata adult and larval transcriptome samples to 454-FLX massively-parallel DNA sequencing to characterize a basal set of genes from this species. We created a combined assembly of the adult and larval datasets including the publicly available midgut larval Roche 454 reads and provided basic annotation. We were particularly interested in diapause-specific genes and genes involved in pesticide and Bacillus thuringiensis (Bt) resistance. RESULTS: Using 454-FLX pyrosequencing, we obtained a total of 898,048 reads which, together with the publicly available 804,056 midgut larval reads, were assembled into 121,912 contigs. We established a repository of genes of interest, with 101 out of the 108 diapause-specific genes described in Drosophila montana; and 621 contigs involved in insecticide resistance, including 221 CYP450, 45 GSTs, 13 catalases, 15 superoxide dismutases, 22 glutathione peroxidases, 194 esterases, 3 ADAM metalloproteases, 10 cadherins and 98 calmodulins. We found 460 putative miRNAs and we predicted a significant number of single nucleotide polymorphisms (29,205) and microsatellite loci (17,284). CONCLUSIONS: This report of the assembly and annotation of the transcriptome of L. decemlineata offers new insights into diapause-associated and insecticide-resistance-associated genes in this species and provides a foundation for comparative studies with other species of insects. The data will also open new avenues for researchers using L. decemlineata as a model species, and for pest management research. Our results provide the basis for performing future gene expression and functional analysis in L. decemlineata and improve our understanding of the biology of this invasive species at the molecular level.


Subject(s)
Coleoptera/genetics , Transcriptome , Actins/genetics , Actins/metabolism , Animals , Bayes Theorem , Coleoptera/metabolism , Diapause, Insect/genetics , Drug Resistance , Gene Ontology , Genes, Insect , High-Throughput Nucleotide Sequencing , Insect Proteins/genetics , Insect Proteins/metabolism , Introduced Species , Larva/genetics , Larva/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Annotation , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Serpins/genetics , Serpins/metabolism
8.
Evol Appl ; 6(2): 313-23, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23467574

ABSTRACT

Adaptation to stressful environments is one important factor influencing species invasion success. Tolerance to one stress may be complicated by exposure to other stressors experienced by the preceding generations. We studied whether parental temperature stress affects tolerance to insecticide in the invasive Colorado potato beetle Leptinotarsa decemlineata. Field-collected pyrethroid-resistant beetles were reared under either stressful (17°C) or favourable (23°C) insecticide-free environments for three generations. Then, larvae were exposed to pyrethroid insecticides in common garden conditions (23°C). Beetles were in general tolerant to stress. The parental temperature stress alone affected beetles positively (increased adult weight) but it impaired their tolerance to insecticide exposure. In contrast, offspring from the favourable temperature regime showed compensatory weight gain in response to insecticide exposure. Our study emphasizes the potential of cross-generational effects modifying species stress tolerance. When resistant pest populations invade benign environments, a re-application of insecticides may enhance their performance via hormetic effects. In turn, opposite effects may arise if parental generations have been exposed to temperature stress. Thus, the outcome of management practices of invasive pest species is difficult to predict unless we also incorporate knowledge of the evolutionary and recent (preceding generations) stress history of the given populations into pest management.

9.
BMC Evol Biol ; 13: 13, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23331855

ABSTRACT

BACKGROUND: Invasive pest species offers a unique opportunity to study the effects of genetic architecture, demography and selection on patterns of genetic variability. Invasive Colorado potato beetle (Leptinotarsa decemlineata) populations have experienced a rapid range expansion and intense selection by insecticides. By comparing native and invasive beetle populations, we studied the origins of organophosphate (OP) resistance-associated mutations in the acetylcholinesterase 2 (AChE2) gene, and the role of selection and demography on its genetic variability. RESULTS: Analysis of three Mexican, two US and five European populations yielded a total of 49 haplotypes. Contrary to the expectations all genetic variability was associated with a point mutation linked to insecticide resistance (S291G), this mutation was found in 100% of Mexican, 95% of US and 71% of European beetle sequences analysed. Only two susceptible haplotypes, genetically very differentiated, were found, one in US and one in Europe. The genetic variability at the AChE2 gene was compared with two other genes not directly affected by insecticide selection, diapause protein 1 and juvenile hormone esterase. All three genes showed reduction in genetic variability indicative of a population bottleneck associated with the invasion. CONCLUSIONS: Stochastic effects during invasion explain most of the observed patterns of genetic variability at the three genes investigated. The high frequency of the S291G mutation in the AChE2 gene among native populations suggests this mutation is the ancestral state and thus, either a pre-adaptation of the beetle for OP resistance or the AChE2 is not the major gene conferring OP resistance. The long historical association with host plant alkaloids together with recombination may have contributed to the high genetic variation at this locus. The genetic diversity in the AChE2 locus of the European beetles, in turn, strongly reflects founder effects followed by rapid invasion. Our results suggest that despite the long history of insecticide use in this species, demographic events together with pre-invasion history have been strongly influential in shaping the genetic diversity of the AChE2 gene in the invasive beetle populations.


Subject(s)
Acetylcholinesterase/genetics , Coleoptera/genetics , Genetic Variation , Insecticide Resistance/genetics , Introduced Species , Animals , Coleoptera/drug effects , Coleoptera/enzymology , DNA Mutational Analysis , Genes, Insect , Genetics, Population , Haplotypes , Insecticides/pharmacology , Mutation , Organophosphates/pharmacology , Solanum tuberosum
10.
J Insect Physiol ; 56(3): 277-82, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19896950

ABSTRACT

Temperature and mass dependency of insect metabolic rates are well known, while less attention has been given to other factors, such as age. Among insect species that experience seasonal variation in environmental conditions, such as in temperate latitudes, age may also have indirect effects on the metabolic rate. We examined the effect of age on the resting metabolic rate of Leptinotarsa decemlineata during 11 days after adult emergence by using flow-through respirometry. Age had a significant mass-independent effect on metabolic rate of beetles. A twofold increase in metabolic rate occurred during the first 2 days of adult life after which metabolic rate decreased with age relatively slowly. Ten day-old adult beetles had a metabolic rate similar to newly emerged beetles. The beetles have to be able to complete their development and prepare for overwintering during the relatively short favourable summer periods. Therefore, the observed pattern in metabolic rate may reflect physiological changes in the pre-diapause beetles adapted to temperate latitudes.


Subject(s)
Coleoptera/physiology , Animals , Body Size , Coleoptera/growth & development , Female , Male , Seasons , Sex Factors , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...